Math, asked by bhandarilata250, 6 days ago

Factorize a²+2ab+b²-x²+2xy-y²​

Answers

Answered by durgapurswani999
1

using identity (a+b) =a sq. + 2ab + b sq.

= (a+b)sq. - (x+y)sq.

now, using identity a sq. - b sq. = (a+b)(a- b)

(a+b+x+y)(a+b-x+y) = ANSWER

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {a}^{2} + 2ab +  {b}^{2} -  {x}^{2} + 2xy -  {y}^{2}  \\

can be regrouped as

\rm \:  =  \:({a}^{2} + 2ab +  {b}^{2}) -  ({x}^{2} - 2xy + {y}^{2})  \\

We know,

\boxed{ \rm{ \: {x}^{2} + 2xy +  {y}^{2} =  {(x + y)}^{2}  \: }} \\

and

\boxed{ \rm{ \: {x}^{2}  -  2xy +  {y}^{2} =  {(x  -  y)}^{2}  \: }} \\

So, using these results, we get

\rm \:  =  \:  {(a + b)}^{2} -  {(x - y)}^{2}  \\

We know,

\boxed{ \rm{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }} \\

So, using this identity, we get

\rm \:  =  \: [(a + b) + (x - y)] \: [(a + b) - (x - y)] \\

\rm \:  =  \: (a + b + x - y) \: (a + b - x + y) \\

Hence,

\rm\implies \:  {a}^{2} + 2ab +  {b}^{2} -  {x}^{2} + 2xy -  {y}^{2}    \\  \\ \rm \:  =  \: (a + b + x - y) \: (a + b - x + y) \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions