Math, asked by beingYSR, 1 year ago

factorize (a²-4a)(a²-4a-1)-20

Answers

Answered by harendrachoubay
9

The factorisation of (a^2-4a)(a^2-4a-1)-20 is equal toa(a-4)[(a+1)(a-1)-4a]-20.

Step-by-step explanation:

We have,

(a^2-4a)(a^2-4a-1)-20

To find, the factorisation of (a^2-4a)(a^2-4a-1)-20 = ?

(a^2-4a)(a^2-4a-1)-20

=(a^2-4a)(a^2-1-4a)-20

=a(a-4)(a^2-1^2-4a)-20

=a(a-4)[(a+1)(a-1)-4a]-20

Using the algebraic identity,

x^{2} -y^{2} =(x+y)(x-y)

=a(a-4)[(a+1)(a-1)-4a]-20

∴ The factorisation of (a^2-4a)(a^2-4a-1)-20 =a(a-4)[(a+1)(a-1)-4a]-20

Thus, the factorisation of (a^2-4a)(a^2-4a-1)-20 is equal toa(a-4)[(a+1)(a-1)-4a]-20.

Similar questions