Math, asked by anshu678934, 8 months ago

factorize abx^2 +(b^2-ac)x - bc=0​

Answers

Answered by aryan073
3

Step-by-step explanation:

abx²+(b²-ac) x-bc=0

b²-4ac

(b²-ac)²-4(ab)(-bc) =0

b*4+ac²-2b²ac+4ab²c=0

b*4+ac²+2ab²c

=(b²+ac)²

By formula method

x=-(b²-ac)±root(b²+AC)²/2ab

x=-b²+ac±b²+ac/2ab

x=-b²+ac+b²+ac/2ab,, ,x=-b²+ac-b²+ac/2ab

x=2ac/2ab=c/b. , x=-2b²/2ab=b/a

Answered by Anonymous
72

Step-by-step explanation:

Answer:

 \boxed{\mathfrak{x = -   \frac{b}{a}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{c}{b}}}

Step-by-step explanation:

 \sf Solve  \: for \:  x: \\  \sf \implies ab {x}^{2}  + ( {b}^{2}  - ac)x - bc = 0 \\  \\  \sf The \:  left \:  hand  \: side  \: factors  \: into \:  a  \\  \sf product \:  with \:  two  \:   terms: \\  \sf \implies ab {x}^{2}  + {b}^{2}x  - acx - bc = 0  \\ \\  \sf \implies bx(ax + b) - c(ax + b) = 0 \\  \\  \sf \implies (ax + b)(bx - c) = 0 \\  \\  \sf Split  \: into \:  two \:  equations \: and \: calculate \: x : \\  \sf \implies ax + b = 0 \:  \:  \:  \: or \:  \:  \:  \: bx - c = 0 \\  \\  \sf \implies ax =  - b \:  \:  \:  \: or \:  \:  \:  \: bx = c \\   \\  \sf \implies x = -   \frac{b}{a}  \:  \:  \:  \: or \:  \:  \:  \: x =  \frac{c}{b}

Similar questions