Factorize each of the following expressions:
3√3a³ -b³ -5√5c³ -3√15abc
Answers
The algebraic expression is given as : 3√3a³ - b³ - 5√5c³ - 3√15abc
We can rewrite the given expression as :
(√3a)³ + (- b)³ + (-√5c)³ − 3(√3a)(b)(-√5c)
We know, a³ + b³ + c³ − 3abc = (a + b + c)(a² + b² + c²− ab − bc − ca)
=(√3a - b -√5c) { (√3a)² + (-b)² + (-√5c)² −√3a × b − (b) × (-√5c) −(- c) ×√3a}
= (√3a - b -√5c) {3a² + b² + 5c² -√3ab - √5bc + √15ca}
Hence the factors of 3√3a³ - b³ - 5√5c³ - 3√15abc is (√3a - b -√5c) {3a² + b² + 5c² -√3ab - √5bc + √15ca}.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
Factorize each of the following expressions:
2√2a³+16√2b³+c³-12abc
https://brainly.in/question/15902463
Factorize each of the following expressions: 8x³-125y³+180xy+216
https://brainly.in/question/15902461
Answer:
Step-by-step explanation:
We can rewrite the given expression as :
(√3a)³ + (- b)³ + (-√5c)³ − 3(√3a)(b)(-√5c)
We know, a³ + b³ + c³ − 3abc = (a + b + c)(a² + b² + c²− ab − bc − ca)
=(√3a - b -√5c) { (√3a)² + (-b)² + (-√5c)² −√3a × b − (b) × (-√5c) −(- c) ×√3a}
= (√3a - b -√5c) {3a² + b² + 5c² -√3ab - √5bc + √15ca}