Math, asked by chaya4696, 11 months ago

Factorize each of the following expressions:
(a+b)³ -8(a-b)³

Answers

Answered by nikitasingh79
68

The algebraic expression is given as :  (a + b)³ - 8(a - b)³

 = (a + b)³ − [2(a − b)]³

= (a + b)³ − [2a − 2b] ³

In order to factorise the given algebraic expression as the differences of two cubes we use the following identities - a³ - b³ = (a - b) (a² + ab + b²) :

Here a = (a + b) and b = (2a − 2b) :  

= (a + b − (2a − 2b)) ((a + b)² + (a + b)(2a − 2b) + (2a − 2b)²)

By using an identity , (a + b)² = a² + b² + 2ab :  

=(a + b− 2a + 2b)(a² + b² + 2ab + (a + b)(2a − 2b) + (2a − 2b)²)

On multiplying the terms (a + b)(2a − 2b) :  

= (a − 2a + b + 2b)(a² + b² + 2ab + 2a² −2ab + 2ab −2b² + (2a − 2b)²)

=(3b − a)(3a² + 2ab − b² + (2a − 2b)²)

By using an identity , (a + b)² = a² + b² + 2ab :

= (3b − a)(3a² + 2ab − b² + ((2a)² +  (2b)²  - 2 × 2a × 2b)

= (3b − a)(3a² + 2ab − b² + 4a² + 4b² − 8ab)

=(3b − a)(3a² + 4a² − b² + 4b² − 8ab + 2ab)

= (3b − a)(7a² + 3b² − 6ab)

= (- a + 3b)(7a² + 3b² − 6ab)

Hence, the factorization of an algebraic expression is (- a + 3b)(7a² + 3b² − 6ab) .

HOPE THIS ANSWER WILL HELP YOU…..

Similar questions :

Factorize each of the following expressions:

32a²+108b³

https://brainly.in/question/15901032

Factorize each of the following expressions:

10x⁴y-10xy⁴

https://brainly.in/question/15900740

Answered by Anonymous
206

Answer:

Step-by-step explanation:

= (a + b − (2a − 2b)) ((a + b)² + (a + b)(2a − 2b) + (2a − 2b)²)

=(a + b− 2a + 2b)(a² + b² + 2ab + (a + b)(2a − 2b) + (2a − 2b)²)= (a − 2a + b + 2b)(a² + b² + 2ab + 2a² −2ab + 2ab −2b² + (2a − 2b)²)

=(3b − a)(3a² + 2ab − b² + (2a − 2b)²)

= (3b − a)(3a² + 2ab − b² + ((2a)² +  (2b)²  - 2 × 2a × 2b)

= (3b − a)(3a² + 2ab − b² + 4a² + 4b² − 8ab)

=(3b − a)(3a² + 4a² − b² + 4b² − 8ab + 2ab)

= (3b − a)(7a² + 3b² − 6ab)

= (- a + 3b)(7a² + 3b² − 6ab)

Similar questions