Math, asked by UTKARSHN5927, 11 months ago

Factorize each of the following expressions: (x/2 + y + z/3)³ + (x/3 - 2y/3 + y)³ + (- 5x/6 - y/3 - 4z/3)³

Answers

Answered by harendrachoubay
3

The factorisation of (\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

=(\dfrac{x}{2}+y+\dfrac{z}{3} )(\dfrac{x}{3} -\dfrac{2y}{3}+y)(- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )

Step-by-step explanation:

The given expression:

(\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

To find, the factorisation of (\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3 = ?

Let a = \dfrac{x}{2}+y+\dfrac{z}{3}, b =  \dfrac{x}{3} -\dfrac{2y}{3}+y and c = - \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3}

∴ a + b + c

= \dfrac{x}{2}+y+\dfrac{z}{3} + \dfrac{x}{3} -\dfrac{2y}{3}+y + - \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3}

= (\dfrac{x}{2}+ \dfrac{x}{3}- \dfrac{5x}{6}) +(y-\dfrac{2y}{3}+y- \dfrac{y}{3}) + (-\dfrac{4z}{3}+\dfrac{z}{3} )

= 0

Using the algebraic identity,

If a + b + c = 0, then

a^{3} +b^{3} +c^{3} =3abc

(\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

= (\dfrac{x}{2}+y+\dfrac{z}{3} )(\dfrac{x}{3} -\dfrac{2y}{3}+y)(- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )

Thus, the factorisation of (\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

=(\dfrac{x}{2}+y+\dfrac{z}{3} )(\dfrac{x}{3} -\dfrac{2y}{3}+y)(- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )

Answered by HeartCrusher
164

The factorisation of (\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

=(\dfrac{x}{2}+y+\dfrac{z}{3} )(\dfrac{x}{3} -\dfrac{2y}{3}+y)(- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )

Step-by-step explanation:

The given expression:

(\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

To find, the factorisation of (\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3 = ?

Let a = \dfrac{x}{2}+y+\dfrac{z}{3}, b =  \dfrac{x}{3} -\dfrac{2y}{3}+y and c = - \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3}

∴ a + b + c

= \dfrac{x}{2}+y+\dfrac{z}{3} + \dfrac{x}{3} -\dfrac{2y}{3}+y + - \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3}

= (\dfrac{x}{2}+ \dfrac{x}{3}- \dfrac{5x}{6}) +(y-\dfrac{2y}{3}+y- \dfrac{y}{3}) + (-\dfrac{4z}{3}+\dfrac{z}{3} )

= 0

Using the algebraic identity,

If a + b + c = 0, then

a^{3} +b^{3} +c^{3} =3abc

(\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

= (\dfrac{x}{2}+y+\dfrac{z}{3} )(\dfrac{x}{3} -\dfrac{2y}{3}+y)(- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )

Thus, the factorisation of (\dfrac{x}{2}+y+\dfrac{z}{3} )^3 + (\dfrac{x}{3} -\dfrac{2y}{3}+y)^3 + (- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )^3

=(\dfrac{x}{2}+y+\dfrac{z}{3} )(\dfrac{x}{3} -\dfrac{2y}{3}+y)(- \dfrac{5x}{6} - \dfrac{y}{3}  - \dfrac{4z}{3} )

Similar questions