factorize given in figure
Attachments:
Answers
Answered by
0
Question.
(ax+by)²+(bx-ay)²
Answer
Use Identity (a+b)²=a²+b²+2ab
And (a-b)²=a²+b²-2ab
Above Term can be written as
(ax+by)²+(bx-ay)²
[(ax)²+(by)²+2axby]+[(bx)²+(ay)²-2bxay]
=(ax²)+(by)²+(bx)²+(ay)²
=(ax)²+(by)²+(bx)²+(ay)²
=[a²x²+b²x²]+[b²y²+a²y²]
=x²(a²+b²)+y²(b²+a²)
=(a²+b²)(x²+y²)
(ax+by)²+(bx-ay)²
Answer
Use Identity (a+b)²=a²+b²+2ab
And (a-b)²=a²+b²-2ab
Above Term can be written as
(ax+by)²+(bx-ay)²
[(ax)²+(by)²+2axby]+[(bx)²+(ay)²-2bxay]
=(ax²)+(by)²+(bx)²+(ay)²
=(ax)²+(by)²+(bx)²+(ay)²
=[a²x²+b²x²]+[b²y²+a²y²]
=x²(a²+b²)+y²(b²+a²)
=(a²+b²)(x²+y²)
pratyush4211:
Is it right
Similar questions