Math, asked by patilshardasandip, 1 month ago

Factorize
i)a^3 – 2a^2– 4a + 8
ii) (ax + by)^2 + (bx – ay)^2

Answers

Answered by anindyaadhikari13
15

\textsf{\large{\underline{Solution}:}}

Q1)

Given:

\rm=a^{3}-2a^{2}-4a+8

Take a² as common from first two terms, we get:

\rm=a^{2}(a-2)-4a+8

Take -4 as common from last two terms, we get:

\rm=a^{2}(a-2)-4(a-2)

Take (a - 2) as common:

\rm=(a^{2}-4)(a-2)

Using identity a² - b² = (a + b)(a - b), we get:

\rm=(a+2)(a-2)(a-2)

\rm=(a+2)(a-2)^{2}

Which is our required answer.

————————————————————————————————

Q2)

Given:

\rm=(ax+by)^{2}+(bx-ay)^{2}

Expanding the terms, we get:

\rm=(ax)^{2}+(by)^{2}+2axby+(bx)^{2}+(ay)^{2}-2axby

\rm=(ax)^{2}+(by)^{2}+(bx)^{2}+(ay)^{2}

On rearranging the terms, we get:

\rm=(ax)^{2}+(bx)^{2}+(ay)^{2}+(by)^{2}

Taking x² as common from first two terms, we get:

\rm=x^{2}(a^{2}+b^{2})+(ay)^{2}+(by)^{2}

Taking u² as common from last two terms, we get:

\rm=x^{2}(a^{2}+b^{2})+y^{2}(a^{2}+b^{2})

Taking (a² + b²) as common, we get:

\rm=(x^{2}+y^{2})(a^{2}+b^{2})

Which is our required answer.

\textsf{\large{\underline{Answer}:}}

  1. (a + 2)(a - 2)²
  2. (x² + y²)(a² + b²)

anindyaadhikari13: Thanks for the brainliest :)
Answered by SANDHIVA1974
2

Answer:

\huge{\bf{\underline{\underline{ \colorbox{black}{\color{white}{Answer}}}}}}

Step-by-step explanation:

[tex]\textsf{\large{\underline{Solution}:}}

Q1)

Given:

\rm=a^{3}-2a^{2}-4a+8

Take a² as common from first two terms, we get:

\rm=a^{2}(a-2)-4a+8

Take -4 as common from last two terms, we get:

\rm=a^{2}(a-2)-4(a-2)

Take (a - 2) as common:

\rm=(a^{2}-4)(a-2)

Using identity a² - b² = (a + b)(a - b), we get:

\rm=(a+2)(a-2)(a-2)

\rm=(a+2)(a-2)^{2}

Which is our required answer.

————————————————————————————————

Q2)

Given:

\rm=(ax+by)^{2}+(bx-ay)^{2}

Expanding the terms, we get:

\rm=(ax)^{2}+(by)^{2}+2axby+(bx)^{2}+(ay)^{2}-2axby

\rm=(ax)^{2}+(by)^{2}+(bx)^{2}+(ay)^{2}

On rearranging the terms, we get:

\rm=(ax)^{2}+(bx)^{2}+(ay)^{2}+(by)^{2}

Taking x² as common from first two terms, we get:

\rm=x^{2}(a^{2}+b^{2})+(ay)^{2}+(by)^{2}

Taking u² as common from last two terms, we get:

\rm=x^{2}(a^{2}+b^{2})+y^{2}(a^{2}+b^{2})

Taking (a² + b²) as common, we get:

\rm=(x^{2}+y^{2})(a^{2}+b^{2})

Which is our required answer.

\textsf{\large{\underline{Answer}:}}

(a + 2)(a - 2)²

(x² + y²)(a² + b²)[/tex]

Similar questions