Factorize :-
i)
ii)
Please send the whole method
Answers
We Have :-
( a + b )² - 11 ( a + b ) - 42
7 + 10 ( 2x - 3y ) - 8 ( 2x - 3y )²
To Do :-
Factorize
Method Used :-
Middle Term Splitting
Solution :-
( i ) ( a + b )² - 11 ( a + b ) - 42
Let ( a + b ) = n
( n )² - 11 ( n ) - 42
n² - 14n + 3n - 42
n ( n - 14 ) + 3 ( n - 14 )
( n - 14 ) ( n + 3 )
( a + b - 14 ) ( a + b + 3 )
( ii ) 7 + 10 ( 2x - 3y ) - 8 ( 2x - 3y )²
Let ( 2x - 3y ) = m
7 + 10 ( m ) - 8 ( m )²
- 8m² + 10m + 7
8m² - 10m - 7
8m² - 14m + 4m - 7
2m ( 4m - 7 ) + 1 ( 4m - 7 )
( 4m - 7 ) ( 2m + 1 )
[ 4 ( 2x - 3y ) - 7 ] [ 2 ( 2x - 3y ) + 1 ]
( 8x - 12y - 7 ) ( 4x - 6y + 1 )
Question :--
Factorize :------
- (a+b)² - 11(a+b) - 42
- 7 + 10(2x-3y) - 8(2x-3y)²
Solution :--
Answer (1)
→ (a+b)² - 11(a+b) - 42
Taking (a+b) common , we get,
→ (a+b) [ (a+b) - 11 - 42) ]
→ (a+b) [ a+b - 53 ]
→ (a+b)(a+b - 53) This is simplest form we can factorize .
__________________________
Answer 2 :--
→ 7 + 10(2x-3y) - 8(2x-3y)²
→ (-8)(2x-3y)² + 10(2x-3y) + 7
Now, Either we take (2x-3y) common From here only, as its not a big polynomial, or to make it little bit easy lets assume (2x-3y) as R .
So , putting this we get,
→ (-8)R² + 10R + 7
Now, for Solving any Quadratic Equation , first we have to Put that Equal to zero.
→ (-8)R² + 10R + 7 = 0
Now , using Splitting the middle term Method , we get,
→ (-8)R² - 4R + 14R + 7 = 0
→ (-4R)[2R +1 ] + 7[2R+1] = 0
→ [2R+1] [ 7 -4R] = 0
Now, putting our value R = (2x-3y) we get,
→ [ 2(2x-3y) + 1 ] [ 7 - 4(2x-3y) ]
→ [ 4x - 6y + 1 ] [ 7 - 8x + 12y ]