Factorize: (i) x3 + 216y3 + 8z3 – 36xyz
(ii) a3 – 64b3 – 27c3 – 36abc
Answers
Given: x^3 + 216y^3 + 8z^3 – 36xyz and a^3 – 64b^3 – 27c^3 – 36abc
To find: Factorise the given terms.
Solution:
- Now we know that:
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc -ac)
- The first term is:
x^3 + 216y^3 + 8z^3 – 36xyz
- It can be written as:
x^3 + 6y^3 + 2z^3 – 3(x)(6y)(2z)
(x + 6y + 2z) { (x)^2 + (6y)^2 + (2z)^2 - (x)(6y) - (6y)(2z) - (x)(2z)] }
(x + 6y + 2z) (x^2 + 36y^2 + 4z^2 - 6xy - 12yz - 2xz)
- The second term is:
a^3 – 64b^3 – 27c^3 – 36abc
- It can be written as:
a^3 + (-4b)^3 + (-3c)^3 - 3(a)(-4b)(-3c)
(a - 4b - 3c) { (a)^2 + (-4b)^2 + (-3c)^2 - (a)(-4b) - (-4b)(-3c) - (a)(-3c) }
(a - 4b - 3c) { a^2 + 16b^2 + 9c^2 + 4ab - 12bc + 3ac }
Answer:
So the factorisation is done in solution part.
GIVEN :
Factorize the expressions
(i)
(ii)
TO FIND :
The simplified factors for the given expressions
SOLUTION :
Given expressions are
(i)
(ii)
Now factorize (i)
By using the exponent property :
Here a=x , b=6y and c=2z
By using the Algebraic identity :
By using the exponent property :
∴
∴ the given polynomial is factorized into the expression
Now factorize (ii)
By using the exponent property :
Here x=a , y=-4b and z=-3c
By using the Algebraic identity :
By using the exponent property :
∴