Math, asked by mathurhimanshi84, 4 months ago

Factorize:
L. 144a+ + 24 + 1​​

Answers

Answered by mahakkori749
0

Answer:

Mark me as Brainleast ❤❤

Step-by-step explanation:

Factoring  144a2+24a+1 

The first term is,  144a2  its coefficient is  144 .

The middle term is,  +24a  its coefficient is  24 .

The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   144 • 1 = 144 

Step-2 : Find two factors of  144  whose sum equals the coefficient of the middle term, which is   24 .

     -144   +   -1   =   -145     -72   +   -2   =   -74     -48   +   -3   =   -51     -36   +   -4   =   -40     -24   +   -6   =   -30     -18   +   -8   =   -26     -16   +   -9   =   -25     -12   +   -12   =   -24     -9   +   -16   =   -25     -8   +   -18   =   -26     -6   +   -24   =   -30     -4   +   -36   =   -40     -3   +   -48   =   -51     -2   +   -72   =   -74     -1   +   -144   =   -145     1   +   144   =   145     2   +   72   =   74     3   +   48   =   51     4   +   36   =   40     6   +   24   =   30     8   +   18   =   26     9   +   16   =   25     12   +   12   =   24   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  12  and  12 

                     144a2 + 12a + 12a + 1

Step-4 : Add up the first 2 terms, pulling out like factors :

                    12a • (12a+1)

              Add up the last 2 terms, pulling out common factors :

                     1 • (12a+1)

Step-5 : Add up the four terms of step 4 :

                    (12a+1)  •  (12a+1)

             Which is the desired factorizatio

2.2    Multiply  (12a+1)  by  (12a+1) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (12a+1)  and the exponents are :

          1 , as  (12a+1)  is the same number as  (12a+1)1 

 and   1 , as  (12a+1)  is the same number as  (12a+1)1 

The product is therefore,  (12a+1)(1+1) = (12a+1)2 

Final result :

(12a + 1)2

Similar questions