factorize m^3-9n^2+26n-24
Answers
Given :- factorise :- n^3-9n^2+26n-24 ?
Solution :-
→ p(n) = n³ - 9n² + 26n - 24
checking, n = 1,
→ p(1) = (1)³ - 9(1)² + 26*1 - 24 = 1 - 9 + 26 - 24 = (-6) ≠ 0
checking , n = 2
→ p(2) = (2)³ - 9(2)² + 26*2 - 24 = 8 - 36 + 52 - 24 = 60 - 60 = 0 .
so, (n - 2) is factor of given polynomial .
now, dividing p(n) by (n - 2) we get,
n - 2 ) n³ - 9n² + 26n - 24 ( n² - 7n + 12
-n³ - 2n²
-7n² + 26n
-7n² + 14n
12n - 24
-12n - 24
0
then,
→ p(n) = (n - 2)(n² - 7n + 12)
→ p(n) = (n - 2)(n² - 4n - 3n + 12)
→ p(n) = (n - 2)[n(n - 4) - 3(n - 4)]
→ p(n) = (n - 2)[(n - 4)(n - 3)]
therefore,
→ n³ - 9n² + 26n - 24
→ (n - 2)(n - 3)(n - 4) (Ans.)
Learn more :-
JEE mains Question :-
https://brainly.in/question/22246812
. Find all the zeroes of the polynomial x4
– 5x3 + 2x2+10x-8, if two of its zeroes are 4 and 1.
https://brainly.in/question/39026698