Factorize
Please solve it
Answers
Correct question :
Factorise the foIIowing :
x³ + 13x² + 32x + 20
Given :
- x³ + 13x² + 32x + 20
SoIution :
We can factorise it in two methods i.e. first one through factorisation method . Second one through factor theorem.
Let's do it through factor theorem.
Let f(x) = x³ + 13x² + 32x + 20
∴ f(-1) = (-1)³ + 13(-1)² + 32(-1) + 20
= -1 + 13 × 1 - 32 + 20
= -1 + 13 - 12
= 12 - 12
= 0
According to factor thorem, x - (-1) ⇔ (x + 1) is a factor of f(x)
Now factorising that expression :
⇒ x³ + 13x² + 32x + 20
⇒ x³ + x² + 12x² + 12x + 20x + 20
⇒ x²(x + 1) + 12x(x + 1) + 20(x + 1)
⇒ (x² + 12x + 20)(x + 1)
⇒ (x² + 10x + 2x + 20)(x + 1)
⇒ {x(x + 10) + 2(x + 10)}(x + 1)
⇒ (x + 10) (x + 2) (x + 1)
⇒ (x + 1)(x + 2)(x + 10) ············· (Answer)
Answer:
Let p(x) = x3 + 13x2 + 32x + 20
p(-1) = -1 + 13 - 32 + 20 = -33 + 33 = 0
Therefore (x + 1) is a factor of p(x).
On dividing p(x) by (x + 1) we get
p(x) (x + 1) = x2 + 12x + 20
Thus,
x3 + 13x2 + 32x + 20 = (x + 1)(x2 + 12x + 20)
= (x + 1) (x2 + 10x + 2x + 20)
= (x + 1)[x(x + 10) + 2(x + 10)]
= (x + 1) (x +2) (x + 10)
Hence, x3 + 13x2 + 32x + 20 = (x + 1) (x +2) (x + 10).
2nd method
x³+13x²+32x+20
=(x+1)(x²+12x+20) [∵, for x=-1, x³+13x²+32x+20=-1+13-32+20=0]
=(x+1)(x²+10x+2x+20)
=(x+1){x(x+10)+2(x+10)}
=(x+1){(x+10)(x+2)}
=(x+1)(x+2)(x+10)
Step-by-step explanation: mark as brainliest and follow me