Math, asked by honeyhari666, 10 days ago

Factorize: r^4 – 1



please answer it fast

Answers

Answered by XxLUCYxX
2

  \color{red} \large\bold{Given,} \\  \\  \sf \:  \bull \: Length \: of \: the  \: rectangle \: is \: 4 \: meters \: less \: than \: its \: breadth. \\  \\  \sf \bull \: Perimeter \: of \: the \: rectangle \: is \: 52 \: meters. \\  \\  \color{lime} \large \bold{To \: find \: out,} \\  \\  \sf \:    \star \: Its \: length \: and \: breadth. \\  \\   \color{gold} \large\bold{Solution\: ―} \\  \\  \sf \: Let\:the\: \:  breadth\:of\:the\:rectangle\:be\:x\:meters \\ \\ \sf Then,\:Length \:=\:2x\:-\:4 \\  \\ \color{orange}\boxed{ \sf \: Perimeter_{(rectangle)}  \: =  \:2 \:  \times  \: (Length \:  \times  \: B readth )} \\  \\  \sf \:  \large \: Substituting\:the\:values,\:we\:get, \\  \\  \sf \: 52 = 2(2x - 4 + x) \\  \\  \sf \: 52 = 2(3x - 4) \\  \\  \sf \: 3x - 4 =  \frac{52}{2}  \\  \\  \sf \: 3x - 4 = 26 \\  \\  \sf \: 3x = 26 + 4 \\  \\ \sf \: x \:  =  \:  \frac{30}{3}  \\  \\  \sf \: x \:  =  \: 10 \\  \\  \sf \:  Length \:  = \: 2x - 4  \\  \\  \sf \:  =  \: 2 \times 10 - 4  \\  \\{ \underline{  \sf \: ☛ \: Length \:  =  \: 16 \: meters.}} \\  \\  \sf \:  \:{ \underline{☛\: Breadth \:  =  \: 10 \: meters}}

 \color{lime}\rule{200000000 pt}{2pt}

 \color{red}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}

Answered by senboni123456
2

Step-by-step explanation:

We have,

 {r}^{4}  - 1

 =   \left({r}^{2} \right)^{2}   - \left(1\right)^{2}

 =   \left({r}^{2}  - 1\right)\left( {r}^{2}  + 1\right)

 =   \left(r    -  1\right)\left(r   + 1\right)\left( {r}^{2}  + 1\right)

Similar questions