Math, asked by DrVIDHYA, 3 months ago

factorize t^2+18t-243​

Answers

Answered by mohanddr
9

Answer:

Your question is

2

+

1

8

2

4

3

t^{2}+18t-243

t2+18t−243

Grouping

1

Use the sum-product pattern

2

+

1

8

2

4

3

t^{2}+{\color{#c92786}{18t}}-243

t2+18t−243

2

+

2

7

9

2

4

3

t^{2}+{\color{#c92786}{27t}}{\color{#c92786}{-9t}}-243

t2+27t−9t−243

2

Common factor from the two pairs

2

+

2

7

9

2

4

3

t^{2}+27t-9t-243

t2+27t−9t−243

(

+

2

7

)

9

(

+

2

7

)

t(t+27)-9(t+27)

t(t+27)−9(t+27)

3

Rewrite in factored form

(

+

2

7

)

9

(

+

2

7

)

t(t+27)-9(t+27)

t(t+27)−9(t+27)

(

9

)

(

+

2

7

)

(t-9)(t+27)

(t−9)(t+27)

Solution

(

9

)

(

+

2

7

)

(t-9)(t+27)

(t−9)(t+27)

Answered by Arpitaidalgave123
2

Step-by-step explanation:

t²+ 27t - 9t -243

t ( t +27) - 9 ( t + 27 )

( t -9) ( t +27 )

t = 9 or t = -27

Similar questions