Math, asked by akshukimani, 3 months ago

◆ Factorize :-
1) \: 36 {a}^{2}  - 25
2) \:  {x}^{2}  + 12x + 36
3) \:  {y}^{2}  - 7y + 12
Dont spam !! ​

Answers

Answered by pihu4976
18

Answer:

hope it helps you!!!!!!

Attachments:
Answered by genius1947
21

Question :-

Factorize :-

\sf1) \: 36 {a}^{2} - 25

\sf2) \: {x}^{2} + 12x + 36

\sf3) \: {y}^{2} - 7y + 12

____________________

Solution :-

 \sf1.) \:  \:  \sf36 {a}^{2}  - 25

: \implies   \sf{(6a)}^{2}  -  {(5)}^{2}

 : \implies  \sf(6a + 5)(6a - 5) \\   \boxed{\sf{using \: the \: property :  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)}}

__________

 \sf2.) \:  \:   \sf{x}^{2}  + 122 + 36

:  \implies   \sf{x}^{2}  + 6x + 6x + 36

:  \implies  \sf x(x + 6) + 6(x + 6)

:  \implies \sf (x + 6)(x + 6)

__________

 \sf3.) \:  \:  \sf { y}^{2}  - 7y + 12

:  \implies \sf {y}^{2}  - 4y - 3y + 12

:  \implies \sf y(y - 4) - 3(y - 4)

:  \implies  \sf(y - 4)(y - 3)

__________

Final Answers :-

 \sf1.) \:  \:  \sf(6a + 5)(6a - 5)

 \sf2.) \:  \:  \sf(x + 6)(x + 6)

 \sf3.) \:  \:  \sf(y - 4)(y - 3)

____________________

Similar questions