Math, asked by sayed2276, 1 year ago

factorize:
5 \sqrt{5x }^{2}   + 30x + 8 \sqrt{5}

Answers

Answered by Anonymous
6

SOLUTION:-

Given:

5√5x² +30x +8√5

Therefore,

Factorize by splitting the middle term.

5 \sqrt{5}  {x}^{2}  + 30x + 8 \sqrt{5}  \\  \\  =  > 5 \sqrt{5}  {x}^{2}  + 20x + 10x + 8 \sqrt{5}  = 0 \\  \\   =  > 5 \sqrt{5}  {x}^{2}  + 20x + (5 \times 2)x + 8 \sqrt{5}  = 0 \\  \\  =  > 5 \sqrt{5}  {x}^{2}  + 20x + ( \sqrt{5}  \times  \sqrt{5}  \times 2)x + 8 \sqrt{5}  = 0 \\  \\  =  > 5x( \sqrt{5} x + 4) +  \sqrt{5}  \times 2( \sqrt{5} x + 4) = 0 \\  \\  =  > 5x( \sqrt{5} x + 4) + 2 \sqrt{5} ( \sqrt{5} x + 4) = 0 \\  \\  =  > ( \sqrt{5 } x + 4)(5x + 2 \sqrt{5} ) = 0 \\  \\  =  >  \sqrt{5} x + 4 = 0 \:  \: or \:  \: 5x + 2 \sqrt{5}  = 0 \\  \\  =  >  \sqrt{5} x  =   - 4 \:  \: or \:  \: 5x =   - 2 \sqrt{5}  \\  \\  =  > x =  \frac{ - 4}{ \sqrt{5} }  \:  \: or \:  \:  x =  \frac{ - 2 \sqrt{5} }{5 }  \\  \\  =  > x =  \frac{ - 4 \times  \sqrt{5} }{ \sqrt{5}  \times  \sqrt{5} }  \:  \:  \: or \:  \:  x =  \frac{ - 2 \sqrt{5} }{5}  \\  \\  =  > x =  \frac{ - 4 \sqrt{5} }{5}  \:  \: or \:  \: x =  \frac{ - 2 \sqrt{5} }{5}

Therefore,

Zeroes are x= -4√5/5 and x= -2√5/5.

Hope it helps ☺️

Similar questions