Factorize
Then find the value when x=1, y=2 and z = - 1
Answers
Answered by
4
x = 1
Y = 2
z = - 1
9x^2 + y^2 + z^2 - 6xy + 2yz - 6xz
=> (-3x)^2 + (y)^2 + (z)^2 + 2(-3x)(y) + 2(y)(z) + 2(z)(-3x)
=> ( - 3x + y + z) ^2
Now,
On putting the values of x, y, and z, we get
= [ (- 3 × 1) + 2 + (-1)]^2
= ( - 3 + 2 - 1)^2
= (-2)^2
= 4
Y = 2
z = - 1
9x^2 + y^2 + z^2 - 6xy + 2yz - 6xz
=> (-3x)^2 + (y)^2 + (z)^2 + 2(-3x)(y) + 2(y)(z) + 2(z)(-3x)
=> ( - 3x + y + z) ^2
Now,
On putting the values of x, y, and z, we get
= [ (- 3 × 1) + 2 + (-1)]^2
= ( - 3 + 2 - 1)^2
= (-2)^2
= 4
Answered by
7
Hey friend ☺
☆ FACTORIZATION ☆
9x^2 + y^2 + z^2 - 6xy + 2yz - 6xz
= ( -3 )^2 + ( y )^2 + ( z )^2 + 2 ( -3x )( y ) + 2 ( y ) ( z ) + 2 ( -3x ) ( z )
= ( - 3x + y + z )^2
If x = 1 , y = 2 & z = -1
then
( - 3x + y + z )^2
= ( -3 ( 1 ) + 2 - 1 )^2
= ( - 3 + 2 - 1 )^2
= ( - 2 )^2
= 4
Hope it helps you
✌
☆ FACTORIZATION ☆
9x^2 + y^2 + z^2 - 6xy + 2yz - 6xz
= ( -3 )^2 + ( y )^2 + ( z )^2 + 2 ( -3x )( y ) + 2 ( y ) ( z ) + 2 ( -3x ) ( z )
= ( - 3x + y + z )^2
If x = 1 , y = 2 & z = -1
then
( - 3x + y + z )^2
= ( -3 ( 1 ) + 2 - 1 )^2
= ( - 3 + 2 - 1 )^2
= ( - 2 )^2
= 4
Hope it helps you
✌
Similar questions