Factorize: Please provide full explanation.
Answers
Answered by
1
Answer:
(a + b) (a-b) (a^2 + b^2) (a^2 + b^2 - ab) (a^2 + b^2 + ab) ( a^4 + b^4 - a^2 b^2)
Step-by-step explanation:
a^12 - b^12
= ( a^6)^2 - (b^6)^2
= ( a^6 - b^6) (a^6 + b^6)
= [ (a^2)^3 - (b^2)^3] [ (a^2)^3 + (b^2)^3]
= (a^2 - b^2) (a^4 + b^4 + a^2 b^2) (a^2 + b^2) (a^4 + b^4 - a^2 b^2)
= (a + b) (a - b) ( a^2 +b^2) (a^4 + b^4 + 2a^2 b^2 - a^2 b^2) ( a^4 + b^4 - a^2 b^2)
= (a + b) (a - b)(a^2 +b^2) [ (a^2 + b^2)^2 - (ab)^2] (a^4 + b^4 - a^2 b^2)
= (a + b) (a-b) (a^2 + b^2) (a^2 + b^2 - ab) (a^2 + b^2 + ab) ( a^4 + b^4 - a^2 b^2)
Hope it helps you
Similar questions