Math, asked by auryasurya49, 11 months ago

Factorize
  {a}^{4}  +  2 {a}^{2}   {b}^{2}  +   {b}^{2}

Answers

Answered by Abhishek474241
11

Correct Question

 {a}^{4} + 2 {a}^{2} {b}^{2} + {b}^{4}

Solution

we know that

\color{brown} {a}^{2} + 2 {a}^{} {b}^{} + {b}^{2}=\color{red}{(a+b)}^2(also real it from this)

Now we factorise the actual question

\implies {a}^{4} + 2 {a}^{2} {b}^{2} + {b}^{4}

\implies {a}^{4} +  {a}^{2} {b}^{2}+  {a}^{2} {b}^{2} + {b}^{4}

\implies {a}^{4} +  {a}^{2} {b}^{2}+  {a}^{2} {b}^{2} + {b}^{4}

Now taking common and

Then,

\impliesa²(a²+b²)+b²(a²+b²)

\implies(a²+b²)(a²+b²)

Hence,the factorisation will be (a²+b²)(a²+b²)

Answered by Saby123
16

</p><p>\tt{\huge {\pink {Hello!!! }}}

</p><p></p><p>\tt{\red{Correction \: - }}

 \tt{ \purple{ \implies{ {a}^{4}  + 2 {a}^{2}  {b}^{2} \:  +  \:  {b}^{4}  }}}

 \tt{ \orange{ \implies {({ {a}^{2}) }^{2}  + 2 { a }^{2}  {b}^{2} \:  +  {( {b}^{2} )}^{2}   =  {( {a}^{2}  +  {b}^{2} )}^{2} }}}

Hence Factorised.

Similar questions