Math, asked by MansiGarg1111, 1 year ago

Factorize :
 {p}^{2}  + 2q -  {q}^{2}  +  {r}^{2}  - 1 - 2pr

Answers

Answered by Anonymous
11

Answer:

\boxed{(p-r+q-1)(p-r-q+1)}

Step-by-step explanation:

p^2+2q-q^2+r^2-1-2pr

\implies p^2+r^2-2pr-q^2-1+2q

\implies p^2+r^2-2pr-(q^2+1^2-2q)

_____________________________________________

We know that :

\boxed{a^2+b^2-2ab=(a-b)^2}

______________________________________________

\implies (p-r)^2-(q-1)^2

______________________________________________

We know that :

\boxed{a^2-b^2=(a+b)(a-b)}

________________________________________________

\implies (p-r+q-1)(p-r-q+1)

_________________________________________


\boxed{\bf{(p-r+q-1)(p-r-q+1)}}


This is the answer..............

Hope it helps you

______________________________________________________________________

Answered by AMAYTRIPATHI
10
hi buddy
here's your answer looking for

 {p}^{2}  + 2q -  {q}^{2}  +  {r}^{2}  - 1 - 2pr \\  \\  = ( {p}^{2}  +  {r}^{2}  - 2pr)  + 2p -  {q}^{2}  - 1 \\  \\  =  {(p - r)}^{2}  - (1 +  {q}^{2}  - 2q) \\  \\  =  {(p - r)}^{2}  -  {(1 - q)}^{2}  \\  \\  = (p - r + 1 - q)(p - r - 1 + q)
hope you are satisfied with my answer
Similar questions