Math, asked by Anonymous, 11 months ago

Factorize
x ^{2}  +  \frac{1}{x {}^{2} }  + 2 - 2x -  \frac{2}{x}

Answers

Answered by BrainlyIAS
59

Answer

  • ( x + ¹/ₓ ) ( √x - ¹/√ₓ )²

Given

\bullet \;\;\; \rm x^2+\dfrac{1}{x^2}+2-2x-\dfrac{2}{x}

To Find

  • Value of given factorization

Formula Used

\bullet \;\;\; \rm \bigg(x+\dfrac{1}{x}\bigg)^2=x^2+\dfrac{1}{x^2}+2\\\\\bullet \;\;\; \rm \bigg(x+\dfrac{1}{x}-2\bigg)=\bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^2

Solution

\rm x^2+\dfrac{1}{x^2}+2-2x-\dfrac{2}{x}\\\\\implies \rm \bigg(x^2+\dfrac{1}{x^2}+2\bigg)-2\bigg(x+\dfrac{1}{x}\bigg)\\\\\implies \rm \bigg(x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x}\bigg)-2\bigg(x+\dfrac{1}{x}\bigg)\\\\\implies \rm \bigg(x+\dfrac{1}{x}\bigg)^2-2\bigg(x+\dfrac{1}{x}\bigg)\\\\\implies \rm \bigg(x+\dfrac{1}{x}\bigg)\bigg(x+\dfrac{1}{x}-2\bigg)\\\\\implies \rm \bigg(x+\dfrac{1}{x}\bigg)\bigg((\sqrt{x})^2+\bigg(\dfrac{1}{\sqrt{x}}\bigg)^2-2.\sqrt{x}.\dfrac{1}{\sqrt{x}}\bigg)\\\\

\implies \rm \bigg(x+\dfrac{1}{x}\bigg)\bigg(\sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg)^2


Anonymous: Great :D
Answered by TheDefaulter
39

ANSWER :-

We have to factorize x ^{2} + \frac{1}{x {}^{2} } + 2 - 2x - \frac{2}{x}

For solving these problems we must know the formula -

{(a +b )}^{2} = {a}^{2} + {b}^{2} + 2ab

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 - 2x -  \frac{2}{x}  \\  \\  We  \: know  \: the \:  formula  -  \\  \\  {(a +b )}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\  \\ Now,  \: compare \:  this \:  formula  \: to  \: {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 - 2x -  \frac{2}{x} \\  \\  After  \: comparing, \:  we  \: can  \: write -  \\  \\  ({x +  \frac{1}{x}) }^{2}  - 2(x +  \frac{1}{x} ) \\  \\  Taking  \: common (x +  \frac{1}{x} ) \\  \\  =  >(x +  \frac{1}{x} )[(x +  \frac{1}{x} ) - 2]  -  -   -  -  -  - - (1) \\  \\  Now,   \\  \: again \:  compare \:  [(x +  \frac{1}{x} ) - 2] \: to \: the \: {(a +b )}^{2}  = ({a}^{2}  +  {b}^{2}  + 2ab) \\  \\ so, \: we \: can \: write \: it \:  \: as \\ ( \sqrt{x}  +  \frac{1}{ \sqrt{x} })^{2}\:  =  [(x +  \frac{1}{x} ) - 2] \\  \\ Now,  \: equation \:  (1)  \: can  \: be \:  written \:  as - -  \\  \\  =  > (x +  \frac{1}{x} )( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2} \\  \\ And \:     \: the  \:  \: factorized \:  form \:  of  \: {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 - 2x -  \frac{2}{x} \: is \\ (x +  \frac{1}{x} )( \sqrt{x} +  \frac{1}{ \sqrt{x} } )^{2}


Anonymous: Awesome :P
Similar questions