Math, asked by panesarh989, 11 months ago

Factorize
x(x + y)^{3} - 3yx^{2} (x + y)

Answers

Answered by mysticd
1

x(x + y)^{3} - 3yx^{2} (x + y)

 = \blue {x(x + y)} (x+y)^{2} - 3yx\times\blue {x(x + y)}

 = \blue {x(x + y)} [(x+y)^{2} - 3yx]

Therefore .,

\red {x(x + y)^{3} - 3yx^{2} (x + y)}

 \green {=x(x + y) [(x+y)^{2} - 3yx]}

•••♪

Answered by SweetPoison7
0

x(x + y)^{3} - 3yx^{2} (x + y)x(x+y)

3

−3yx

2

(x+y)

= \blue {x(x + y)} (x+y)^{2} - 3yx\times\blue {x(x + y)}=x(x+y)(x+y)

2

−3yx×x(x+y)

= \blue {x(x + y)} [(x+y)^{2} - 3yx]=x(x+y)[(x+y)

2

−3yx]

Therefore .,

\red {x(x + y)^{3} - 3yx^{2} (x + y)}x(x+y)

3

−3yx

2

(x+y)

\green {=x(x + y) [(x+y)^{2} - 3yx]}=x(x+y)[(x+y)

2

−3yx]

•••♪

Thanks!!!

Similar questions