Math, asked by gedelanaidu38, 1 month ago

factorize the 2x³ - 7x² - 10x +24 polynomials using synthetic division method​

Answers

Answered by RvChaudharY50
7

Solution :-

Let us assume that, (x - 1) is a factor of given polynomial. so, using remainder theorem we get,

→ f(x) = 2x³ - 7x² - 10x +24

→ f(1) = 2(1)³ - 7(1)² - 10(1) + 24

→ f(1) = 2 - 7 - 10 + 24

→ f(1) = 5

checking for (x + 2) ,

→ f(-2) = 2(-2)³ - 7(-2)² - 10(-2) + 24

→ f(-2) = -16 - 28 + 20 + 24

→ f(-2) = 0

then, (x + 2) is a factor of given polynomial .

dividing now we get,

x + 2 ) 2x³ - 7x² - 10x + 24 ( 2x² - 11x + 12

2x³ + 4x²

-11x² - 10x

-11x² - 22x

12x + 24

12x + 24

0

with the help of long division method now, dividing 2x³ - 7x² - 10x + 24 by x + 2 using synthetic division method we get, (x +2 so , we will take (-2) as divisor.) from above divisible avoid all variables first, and then avoid all the partial products. Then, we get,

-2) 2 , (-7) , (-10) , 24 (

2 4

-11 - 22

12 24

0

finally , we get,

-2) 2 , (-7) , (-10) , 24 (

2 , (-11) , 12 , 0

therefore, we get,

→ Quotient = 2x² - 11x + 12

→ Remainder = 0 . { Last digit is remainder . }

hence,

→ 2x³ - 7x² - 10x +24

→ (x + 2)(2x² - 11x + 12)

→ (x + 2)[2x² - 8x - 3x + 12]

→ (x + 2)[2x(x - 4) - 3(x - 4)]

(x + 2)(x - 4)(2x - 3) (Ans.)

Learn more :-

JEE mains Question :-

https://brainly.in/question/22246812

. Find all the zeroes of the polynomial x4

– 5x3 + 2x2+10x-8, if two of its zeroes are 4 and 1.

https://brainly.in/question/39026698

Answered by pulakmath007
6

SOLUTION

TO DETERMINE

To factorise the polynomial 2x³ - 7x² - 10x + 24 using synthetic division method

EVALUATION

Here the given polynomial is

 \sf{p(x) = 2 {x}^{3} - 7 {x}^{2}  - 10x + 24 }

Now we first find the first factor as below

 \sf{p(1) = 2. {1}^{3} - 7 .{1}^{2}  - 10.1 + 24  = 9 \ne \: 0}

 \sf{p( - 1) = 2. {( - 1)}^{3} - 7 .{( - 1)}^{2}  - 10.( - 1) + 24  = 25 \ne \: 0}

 \sf{p(2) = 2. {2}^{3} - 7 .{2}^{2}  - 10.2 + 24  =  - 8 \ne \: 0}

 \sf{p( - 2) = 2. {( - 2)}^{3} - 7 .{( - 2)}^{2}  - 10.( - 2) + 24  = 0}

So - 2 is one of the zeroes of p(x)

Thus ( x + 2 ) is one of factors of p(x)

We now apply Synthetic Division method as below :

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{ - 2}}}&{{\sf{\:\:2\: \: \: - 7 \: \: \: - 10 \: \: \: \: \: \: \: 24 \:\:}}}\\  \\  {\underline{\sf{}}}& \underline{\sf{\:\:\: \: 0 \: \: \: - 4 \: \: \: \: \: \: \: 22 \: \: \: - 24 \:\:}} \\ {\underline{\sf{ 4}}}&{{\sf{  \:  \:  \:  \: 2\: \: \: - 11 \: \: \:  \:  \:  \: 12\: \: \: \: \: \: \:  \boxed{0} \:\:}}}\\ \\  {\underline{\sf{}}}& \underline{\sf{ 0  \: \:  \: \:  \  \:  \: \:  \:  \: 8  \: \: \:  - 12 \: \: \:  \:  \:  \:  \: \:\:}}\\{\sf{}}&{\sf{ \: \: 2\: \: \: \:  \:  \:  \:  - 3 \: \: \: \: \:  \: \boxed{0} \: \: \: \: \: \: \: \: \: \: \:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

In 2nd step we see that ( x - 4 ) is another factor

In 3rd step we see that ( 2x - 3 ) is another factor

So the all three factors are ( x + 2 ) , ( x - 4 ) , ( 2x - 3 )

Thus on factorisation we have

 \sf{2 {x}^{3} - 7 {x}^{2}  - 10x + 24 = (x + 2)(x - 4)(2x - 3) }

FINAL ANSWER

  \boxed{ \:  \: \sf{2 {x}^{3} - 7 {x}^{2}  - 10x + 24 = (x + 2)(x - 4)(2x - 3) } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

Learn more from Brainly :-1. If a : b=c:d=e: f= 2:1, then (a + 2c + 3e) : (5b + 10d + 15f) is equal to:

https://brainly.in/question/23293448

2. If p/2q = 11/5 then p-2q/p+2q = ?

https://brainly.in/question/34239839

Similar questions