Factorize the following by using a suitable identity: (a) a³+b³-8c³+ 6abc (b) (a/b)³+ (b/c)³+ (c/a)³ -3 (c) 8x³ -27y³ + 125 z³+ 90xyz
Answers
Answered by
4
Answer:
your answer is given in the above photo
Attachments:
Answered by
2
Step-by-step explanation:
a. We know the identity a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Using the above identity taking a=a,b=−b and c=2c, the equation a3−b3+8c3+6abc can be factorised as follows:
a3−b3+8c3+6abc=(a3)+(−b)3+(2c)3−3(a)(−b)(2c)
=[a+(−b)+(2c)][a2+(−b)2+(2c)2−(a×−b)−(−b×2c)−(2c×a)]
=(a−b+2c)(a2+b2+4c2+ab+2bc−2ca)
Hence, a3−b3+
b. We know, (a−b)3=a3−b3−3a2b+3ab2
⟹ (a−b)3=a3−b3−3ab(a−b).
Then,
(a−b)3+(b−c)3+(c−a)3
=(a3−3a2b+3ab2−b3)+(b3−3b2c+3bc2−c3)+(c3−3c2a+3ca2−a3)
=−3a2b+3ab2−3b2c+3bc2−3c2a+3ca2
=3a2(c−b)+3b2(a−c)+3c
c. 8x3+27y3+125z3−90xyz
Using,
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Here,
a=2x
b=3y
c=5z,
Therefore,
=>(2x)3+(3y)3+(5z)3−3×2x×3y×5z=(2x+3y+5z)(4x2+9y2+25z2+6xy−15yz−10xz)
Similar questions