Math, asked by pthepro985, 1 day ago

Factorize the following expression using the algebraic expression:
 {x}^{2}  + x +  \frac{1}{4}

Answers

Answered by talpadadilip417
0

Step-by-step explanation:

→In general, given \bf a{x}^{2}+bx+c, the factored form is:

\tt\quad\bull\qquad a\bigg(x-\dfrac{-b+\sqrt{{b}^{2}-4ac}}{2a} \bigg) \bigg(x-\dfrac{-b-\sqrt{{b}^{2}-4ac}}{2a}\bigg)

→In this case, a=1, b=1 and \tt c=\frac{1}{4}

 \tt \quad \bull \qquad \bigg(x-\dfrac{-1+\sqrt{1-4\times \frac{1}{4}}}{2} \bigg) \bigg(x-\dfrac{-1-\sqrt{1-4\times \frac{1}{4}}}{2} \bigg)

Simplify.

 \tt \quad \bull \qquad \bigg(x+\dfrac{1}{2}\bigg)\bigg(x+\dfrac{1}{2}\bigg)

→ Use Product Rule: \tt{x}^{a}{x}^{b}={x}^{a+b}

  \boxed{ \xcancel{ \boxed{ \tt \quad \bull \quad}}{ \tt \bigg(x+\frac{1}{2} \bigg)}^{2}}

Similar questions