Math, asked by Glorious31, 10 months ago

Factorize the following :

2 {x}^{2}  +  {y}^{2}  + 8 {z}^{2}  - 2 \sqrt{2xy}  + 4 \sqrt{2yz}  - 8xz


With proper and clear explanation of steps please!!!

Answers

Answered by Anonymous
72

Correct Question :

Factorize

\rm{2{x}^{2} + {y}^{2} + 8 {z}^{2} - 2 \sqrt{2}xy+ 4 \sqrt{2}yz- 8xz}

Solution :

We have to Factorize

\rm{2{x}^{2} + {y}^{2} + 8 {z}^{2} - 2 \sqrt{2}xy + 4 \sqrt{2}yz - 8xz}

Compare with Formula

\rm{(a+b+c)^2={a}^{2} + {b}^{2} +  {c}^{2}+2ab+2bc+2ca}

Then ,

\rm{2{x}^{2} + {y}^{2} + 8 {z}^{2} - 2 \sqrt{2}xy+ 4 \sqrt{2}yz - 8xz}

=\rm{(-\sqrt{2}x)^2+y^2+(2\sqrt{2}z)^2+2(-\sqrt{2}x)y+2y(2\sqrt{2}z+2(2\sqrt{2}z)(-\sqrt{2}x)}

=\rm{(-2\sqrt{2}x+y+2\sqrt{2}z)^2}

=\rm{(-2\sqrt{2}x+y+2\sqrt{2}z)</p><p>(-2\sqrt{2}x+y+2\sqrt{2}z)}

\rule{200}2

Algeberaic Indentities :

1)\sf{(a+b)^2=a^2+b^2+2ab}

2)\sf{(a-b)^2=a^2+b^2-2ab}

3)\sf{(a^2-b^2)=(a+b)(a-b)}

4)\sf{(a+b+c)^2={a}^{2} + {b}^{2} +  {c}^{2}+2ab+2bc+2ca}

5)\sf{(a+b)^3=a^3+b^3+3ab(a+b)}

Answered by Mister360
18

Answer:

Given :

Factorize

2 {x}^{2} + {y}^{2} + 8 {z}^{2} - 2 \sqrt{2xy} + 4 \sqrt{2yz} - 8xz

SoluTion

To factorize

2 {x}^{2} + {y}^{2} + 8 {z}^{2} - 2 \sqrt{2xy} + 4 \sqrt{2yz} - 8xz

Formula applied

{\boxed {(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac }}

Afterwards

2 {x}^{2} + {y}^{2} + 8 {z}^{2} - 2 \sqrt{2xy} + 4 \sqrt{2yz} - 8xz

= (-√2x)² + y² + 8z² - (2√2z)² + 2( √-2x)y + 2y (2√2z) +2 (2√2z ) (√-2x)

= (-2√2x+y+ 2√2z)²

= (-2√2x + y + 2√2z) (-2√2x +y + 2√2z)

Learn more:-

  • Some algebraic identities:-

{\boxed{(a+b){}^{2}={a}^{2}+2ab+{b}^{2}}}

{\boxed{(a-b){}^{2}={a}^{2}-2ab+{b}^{2}}}

{\boxed{(x+a)(x+a)={x}^{2}+(a+b)x+ab}}

{\boxed{(a+b)(a-b)={a}^{2 }-{b}^{2}}}

{\boxed{a{}^{3}-{b}^{3}={a}^{3}-3a{}^{2}b+3ab {}^{2}+{b}^{3}}}

{\boxed{{(a+b)}^{3}={a }^{3}+{b}^{3}+3ab (a+b)}}

{\boxed{{(a+b+c)}^{2}={a}^{2}+{b}^{2}+{c}^{2}+2ab+2bc+2ca}}

{\boxed{{(a+b-c)}^{2}={a}^{2}+{b}^{2}+{c}^{2}+2ab-2bc-2ca}}

{\boxed{{(a-b+c)}^{2}={a}^{2}+{b}^{2}+{c}^{2}-2ab-2bc+2ca}}

{\boxed{{(a-b-c)}^{2}={a}^{2}+{b}^{2}+{c}^{2}-2ab+2bc-2ca}}

{\boxed{{a}^{3}+{b}^{3}+{c}^{3}-3abc=(a+b+c)({a}^{2}+{b}^{2}+{c}^{2}-ab-bc-ca}}

Similar questions