Math, asked by Serenity25, 4 hours ago

factorize the following :

 {64x}^{3}  +  {27y}^{3}  +  {8z}^{3} - 72xyz

Answers

Answered by Rahul7895
3

Answer:

To Factorize 64x³+27y³+8z³-72xyz

Solution:-

64 {x}^{3}  + 27  {y}^{3}  + 8 {z}^{3}  - 72xyz \\ =(4x)^{3}   + ({3y})^{3}  +  ({2z})^{3}  - 72xyz

we know

 {a}^{3}  +  {b}^{3} +  {c}^{3}   - 3abc  = (a + b + c)(  {a}^{2}   +   {b}^{2}   +   {c}^{2}  - ab - bc - ca)

here

a=4x

b=3y

c=2z

therefore we've to substitute those values in the equation.

(4x+3y+2z)  \\ (({4x})²+({3y})²+({2z})²-(4x \times 3y )  \\  - (3y \times 2z) - (2z \times 4x) \\  = (4x+3y+2z)(16 {x}^{2}  + 9 {y}^{2}  + 4 {z}^{2} ) \\  (- 12xy - 6yz - 8zx)

therefore the answer is.

(4x+3y+2z)(16x²+9y²+4z²-12xy-6yz-8zx)

hope it helps

Similar questions