Math, asked by anucshree, 11 months ago

Factorize the following using splitting the middle term

Whoever does this will receive brainliest​

Attachments:

Answers

Answered by Anonymous
57
\huge\underline\bold{AnswEr:}

( - x - 1 ) ( 2x - 3 )

\huge\underline\bold{ExplanaTion:}

\large\bold{Given-}

• -2x² + x + 3

\large\bold{To\:find-}

• factors

\large\bold{Solution-}

Product = -6

Sum = 1

Factors = 3, -2

: \implies -2x² + 3x - 2x + 3

: \implies -x ( 2x - 3 ) - 1 ( 2x - 3 )

: \implies ( - x - 1 ) ( 2x - 3 )

Hence, our required factors are : ( - x - 1 ) ( 2x - 3 )

\rule{200}2
Answered by MяƖиνιѕιвʟє
15

SoLuTiOn :-

 \implies \:  - 2 {x}^{2}  + x + 3 = 0 \\  \\  \implies \:  - 2 {x}^{2}  + 3x - 2x + 3 = 0 \:  \\  \\  \implies \:  - x(2x - 3) - 1(2x - 3) = 0 \\  \\  \implies \: ( - x - 1)(2x - 3) = 0 \\  \\  \implies \: ( - x - 1) = 0 \: or \: (2x - 3) = 0 \\  \\  \implies \: x =  - 1 \: or \: x =  \frac{3}{2}

Hence,

Zeroes are -1 or 3/2

Now,

Verification :-

On putting x = -1

 \implies \:  -  2{x}^{2}  + x + 3 = 0 \\  \\  \implies \:  - 2 \times  {( - 1)}^{2}  + ( - 1) + 3 = 0 \\  \\  \implies \:  - 2 - 1 + 3 = 0 \\  \\  \implies \: 0 = 0

Now,

On putting x = 3/2

  \implies \: - 2 \times  { (\frac{3}{2} )}^{2}   +  \frac{3}{2}  + 3 = 0 \\  \\  \implies \:   \frac{ - 18}{4}  +  \frac{3 \times 2}{2 \times 2}  +  \frac{3 \times 4}{1 \times 4}  = 0 \\  \\  \implies \:  \frac{ - 18}{4}  +  \frac{18}{4}  = 0 \\  \\  \implies \: 0 = 0

Hence Verified.

Similar questions