factorize the
following x²+4x+6
Answers
Step-by-step explanation:
22−4−6=0
2x^{2}-4x-6=02x2−4x−6=0
Quadratic formula
Factor
1
Common factor
22−4−6=0
2x^{2}-4x-6=02x2−4x−6=0
2(2−2−3)=0
2(x^{2}-2x-3)=02(x2−2x−3)=0
2
Divide both sides of the equation by the same term
2(2−2−3)=0
2(x^{2}-2x-3)=02(x2−2x−3)=0
2−2−3=0
x^{2}-2x-3=0x2−2x−3=0
3
Use the quadratic formula
=−±2−4√2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2−2−3=0
x^{2}-2x-3=0x2−2x−3=0
=1
a={\color{#c92786}{1}}a=1
=−2
b={\color{#e8710a}{-2}}b=−2
=−3
c={\color{#129eaf}{-3}}c=−3
=−(−2)±(−2)2−4⋅1(−3)√2⋅1
x=\frac{-({\color{#e8710a}{-2}}) \pm \sqrt{({\color{#e8710a}{-2}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-3}})}}{2 \cdot {\color{#c92786}{1}}}x=2⋅1−(−2)±(−2)2−4⋅1(−3)