Factorize using splitting the middle term method:
mx/n + n/m = 1 - 2x
Plzz answerr it fasstt....
kvnmurty:
is there a square on x in m x / n ??? is it m x² / n ?
Answers
Answered by
17
given m x² / n + n / m = 1 - 2 x
[ m*m x² + n² ] / ( n * m ) = 1 - 2 x
m² x² + n² = n m - 2 n m x
m² x² + 2 n m x + (n² - n m) = 0
m² [ x² + 2 (n/m) x + (n²/m² - n/m) = 0
Let n/m = k.
m² [ x² + 2 k x + (k² - k) ] = 0
Take Product 1 * (k² - k) . We need to find its factors so that their sum or difference is equal to 2 k.
Factorizing:
k² - k = k ( k -1) , Sum of factors is 2k - 1.
= (k + √k) (k - √k) . Sum of factors is 2 k.
So we got it... NOw..
m² [ x² + 2 k x + (k² - k) ] = 0 becomes
m² [ x² + (k +√k) x + (k - √k) x + (k² - k) ] = 0
m² [ x {x + (k + √k)} + (k - √k) { x + (k + √k) } ] = 0
=> m² {x + k + √k} * { x + k - √k} = 0
m² { x + n/m +√(n/m) } * { x + n/m - √(n/m) } = 0
=> [ m x + n + √(nm) ] * [ m x + n - √(nm) ] = 0
This is the answer.
There are two factors... (m x + n+√nm) and (mx + n - √mn).
[ m*m x² + n² ] / ( n * m ) = 1 - 2 x
m² x² + n² = n m - 2 n m x
m² x² + 2 n m x + (n² - n m) = 0
m² [ x² + 2 (n/m) x + (n²/m² - n/m) = 0
Let n/m = k.
m² [ x² + 2 k x + (k² - k) ] = 0
Take Product 1 * (k² - k) . We need to find its factors so that their sum or difference is equal to 2 k.
Factorizing:
k² - k = k ( k -1) , Sum of factors is 2k - 1.
= (k + √k) (k - √k) . Sum of factors is 2 k.
So we got it... NOw..
m² [ x² + 2 k x + (k² - k) ] = 0 becomes
m² [ x² + (k +√k) x + (k - √k) x + (k² - k) ] = 0
m² [ x {x + (k + √k)} + (k - √k) { x + (k + √k) } ] = 0
=> m² {x + k + √k} * { x + k - √k} = 0
m² { x + n/m +√(n/m) } * { x + n/m - √(n/m) } = 0
=> [ m x + n + √(nm) ] * [ m x + n - √(nm) ] = 0
This is the answer.
There are two factors... (m x + n+√nm) and (mx + n - √mn).
Similar questions