Factorize using the factor theorem 2x^3− 13x^2+6x+45
Answers
Answered by
0
Answer:
let f(x)=2x^3-13x^2+6x+45
for x=3,
f(3)=2(3)^3-13(3)^2+6(3)+45
=54-117+18+45
=117-117
=0
hence x-3=0 is the factor of f(x)
Now,
a/c to factor th.
x-3)2x^3-13x^2+6x+45(2x^2-7x-15
2x^3-6x^2
-. +
_______________
0. -7x^2+6x
-7x^2+21x
+. -
______________
0. -15x+45
-15x+45
+. -
_______________
0
now f(x)=(x-3)(2 x^2-7x-15)
=(x-3)(2x^2-10x+3x-15)
=(x-3){2x(x-5)+3(x-5)}
=(x-3)(x-5)(2x+3)
Answered by
0
Let
then,
let
(x-3) is a factor of f(x).
Dividing f(x) from (x+1), we get:-
Factorizing :-
Hence the factors of f(x) are:-
(x - 5)(2x - 3)(x - 3)
Similar questions