Math, asked by aawishkagupta, 11 months ago

factorize (x+1)^3-(x-1)^3 ​

Answers

Answered by Shahoodalam
2

(x + 1) {}^{3}  - (x - 1) {}^{3}   = 0\\ (x {}^{3}  + 1 + 3x {}^{2}  + 3x) - (x {}^{3}  - 1 - 3x {}^{2}  + 3x)  = 0\\ x {}^{3}  + 1 + 3x {}^{2}  + 3x - x {}^{3}  + 1 + 3x {}^{2}  - 3x  = 0\\ 6x {}^{2}  + 2 = 0 \\ 6x {}^{2}  =  - 2 \\ x {}^{2}  =  -  \frac{2}{6}  \\ x =  - \sqrt{ \frac{2}{6} }  \\ x =  -  \sqrt{ \frac{1}{3} }

Answered by Anonymous
1

let X+1=a

and x-1=b

(a-b)^3=a^3 - b^3 +3b^2a - 3a^2b

a^3 - b^3=(a - b)^3+3ab(a - b)

a^3 - b^3=(a - b)^2(a^2+ab+b^2)

now put the value of a and b

(x+1)^3 - b^3(let z)=8((x+1)^2+(x-1)(x+1)+(x-1)^2

z=8(3x^2+1)

z =  8(( { \sqrt{3} x})^{2}  -  {i}^{2} )

z = 8(( \sqrt{3}  - i)( \sqrt{3}  +i)

Similar questions