Math, asked by SOMEONEinAISpv, 9 months ago

Factorize (x+2)^3+(x-2)^3. Explain it in detail please

Answers

Answered by ItzAditya14
0

Answer:

Factorize (x+2)^3+(x-2)^3. Explain it in detail please

Answered by vaidehi2635
0

Answer:

4(3x^2+4)4(3x2+4)

Step-by-step explanation:

Given :(x+2)^3-(x-2)^3(x+2)3−(x−2)3

To Find : Factorize

Solution:

(x+2)^3-(x-2)^3(x+2)3−(x−2)3

Identity: a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)

a = x+2

b = x-2

Substitute in the identity

(x+2-x+2)((x+2)^2+(x+2)(x-2)+(x-2)^2)(x+2−x+2)((x+2)2+(x+2)(x−2)+(x−2)2)

4(x^2+4+2x+x^2-4+x^2+4-2x)4(x2+4+2x+x2−4+x2+4−2x)

4(3x^2+4)4(3x2+4)

So, :(x+2)^3-(x-2)^3(x+2)3−(x−2)3 = 4(3x^2+4)4(3x2+4)

Hope it will help

Similar questions