Factorize (x+2)^3+(x-2)^3. Explain it in detail please
Answers
Answered by
0
Answer:
Factorize (x+2)^3+(x-2)^3. Explain it in detail please
Answered by
0
Answer:
4(3x^2+4)4(3x2+4)
Step-by-step explanation:
Given :(x+2)^3-(x-2)^3(x+2)3−(x−2)3
To Find : Factorize
Solution:
(x+2)^3-(x-2)^3(x+2)3−(x−2)3
Identity: a^3-b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
a = x+2
b = x-2
Substitute in the identity
(x+2-x+2)((x+2)^2+(x+2)(x-2)+(x-2)^2)(x+2−x+2)((x+2)2+(x+2)(x−2)+(x−2)2)
4(x^2+4+2x+x^2-4+x^2+4-2x)4(x2+4+2x+x2−4+x2+4−2x)
4(3x^2+4)4(3x2+4)
So, :(x+2)^3-(x-2)^3(x+2)3−(x−2)3 = 4(3x^2+4)4(3x2+4)
Hope it will help
Similar questions