Math, asked by kalbhorrushikesh2, 3 months ago

factorize x^2-(x-y)^2​

Answers

Answered by MagicalBeast
11

Given :

x² - ( x-y )²

To find :

Factor

Solution :

Method 1)

  • x² - ( x-y )²

[ Note - Using identity ( a² - b²) = (a+b)(a-b) ]

Here ,

  • a = x
  • b = ( x-y )

➝ x² - ( x-y )² = [ (x) + (x-y) ] × [ (x) - (x-y ) ]

➝ x² - ( x-y )² = [ x + x - y ] × [ x - x + y ]

➝ x² - ( x-y )² = ( 2x - y ) ( y)

➝ x² - ( x-y )² = y(2x-y)

  • Therefore factor are , y and (2x-y)

________________________________

Method 2)

  • x² - ( x-y )²

[ Note - Using identity ( p-q )² = p² + q² - 2pq

Here

  • p = x
  • q = y

➝ x² - ( x-y )² = x² - [ (x)² + (y)² - (2)(x)(y) ]

➝ x² - ( x-y )² = x² - x² - y² + 2xy

➝ x² - ( x-y )² = 2xy - y²

➝ x² - ( x-y )² = y(2x-y)

  • Therefore factor are , y and (2x-y)

________________________________

ANSWER : y(2x-y)


Asterinn: Perfect!
Answered by DüllStâr
99

\pink{\textsf{Required Solution}}\!\!

Method 1:

 \dashrightarrow \sf {x}^{2}  - (x - y) {}^{2}

 \\

 \dashrightarrow \underbrace{ \sf \{x + (x  -  y) \} \{x - (x - y) \}}_{ \tiny\pink{\boxed {\sf{}identity \: used \to{a}^{2} -  {b}^{2}  = (a + b)(a - b) }}}

 \\

 \dashrightarrow \sf \{x + x  -  y \} \{x - (x - y) \}

 \\

 \dashrightarrow \sf \{x + x  -  y \} \{x - x  + y \}

 \\

 \dashrightarrow \sf \{x + x  -  y \} \{ \cancel{x }  - \cancel{x}  + y \}

 \\

 \dashrightarrow \sf \{x + x  -  y \} \{ 0 + y \}

 \\

 \dashrightarrow \sf \{x + x  -  y \} \{ y \}

 \\

 \dashrightarrow \sf \{2x -  y \} \{ y \}

 \\

 \dashrightarrow \sf y\{2x -  1\}

 \\

Method 2:

 \dashrightarrow \sf {x}^{2}  - (x - y) {}^{2}

 \\

 \dashrightarrow \sf {x}^{2}  -  \underbrace{(x {}^{2}   +  y {}^{2}  -  2  \: \times \:  x \:  \times \:  y ) }_{\tiny\pink{\boxed {\sf identity \: used \to {(a - b)}^{2}  =  {a}^{2} +  {b}^{2}   - 2ab}}}

 \\

 \dashrightarrow \sf {x}^{2}  - (x {}^{2}   +  y {}^{2}  -  2 x y )

 \\

 \dashrightarrow \sf {x}^{2}  - x {}^{2}  - y {}^{2}   +  2 x y

 \\

 \dashrightarrow \sf\cancel{ {x}^{2}}  -\cancel{ x {}^{2} } - y {}^{2}   +  2 x y

 \\

 \dashrightarrow \sf- y {}^{2}   +  2 x y

 \\

 \dashrightarrow \sf y(2 x  - 1)

-----------------------------------------------------------

Some more formals related to this question:

→(a+b)²=a²+b²+2ab

→(a-b)(a+b)=a²-b²

→(a +b+c)²= a² +b² +c²+2ab + 2bc + 2ca

→(a +b-c)²= a² +b² + c²+2ab - 2bc- 2ca

→(a - b + c)²= a²+ b² + c² - 2ab - 2bc + 2ca

→(a - b - c)² = a² + b²+ c²- 2ab+2bc-2ca

→(a+b)³=a³+b³+3ab(a+b)

→(a-b)³=a³+b³-3ab(a-b)

→a³ - b³ = (a - b)(a²+ ab + b²)

Similar questions