factorize x^2y^2(a^4+b^4) +a^2b^2(x^4+ y^4)
Answers
Answered by
3
x^2y^2(a^4+b^4) +a^2b^2(x^4+ y^4)
= x^2y^2a^4 + x^2y^2b^4 + a^2b^2x^4 + a^2b^2y^4
= x^2y^2a^4 + a^2b^2x^4 + x^2y^2b^4 + a^2b^2y^4
= a^2x^2(a^2y^2 + b^2x^2) + b^2y^2(b^2x^2 + a^2y^2)
= ( a^2y^2 + b^2x^2)(a^2x^2 + b^2y^2)
= x^2y^2a^4 + x^2y^2b^4 + a^2b^2x^4 + a^2b^2y^4
= x^2y^2a^4 + a^2b^2x^4 + x^2y^2b^4 + a^2b^2y^4
= a^2x^2(a^2y^2 + b^2x^2) + b^2y^2(b^2x^2 + a^2y^2)
= ( a^2y^2 + b^2x^2)(a^2x^2 + b^2y^2)
Similar questions