Math, asked by s9b1582dhaneshwari23, 6 months ago

factorize (x+2y+3z)x(x+2y+3z)​

Answers

Answered by aryamannanu
0

Answer:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

(x+2y + 3z)2 = x2 + 4y2 + 9z2 +4yx + 12zy + 6zx

Answered by Flaunt
43

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

factorize (x+2y+3z)x(x+2y+3z)

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

Here , this identity is used:

 \bold{\boxed{{(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca}}

Here ,a=x;b=2y and c=3z

Now ,putting values into formula :

 =  >  {(x + 2y + 3z)}^{2}  =  {x}^{2}  +  {(2y)}^{2}  +   {(3z)}^{2}  + 2(x)(2y) + 2(2y)(3z) + 2(3z)(x)

 =  {x}^{2}  + 4 {y}^{2}  + 9 {z}^{2}  + 4xy + 12yz + 6zx

 =  {x}^{2}  + 4y(y + x) + 9 {z}^{2}  + 12yz + 6zx

\bold{ =  {x}^{2}  + 4y(x + y) + 3z(3z + 4y + 2x)}

Other Related formulas:

  •  \bold{\boxed{{(a + b )}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab}}

  •  \bold{\boxed{{(a -b)}^{2}  =  {a}^{2}  +{b}^{2}   - 2ab }}
  •  \bold{\boxed{{(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a+b)}}
  •  \bold{\boxed{{(a -b)}^{3}  =  {a}^{3}  +  {b}^{3}  - 3ab(a-b)}}

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions