Math, asked by dxb3394212, 11 months ago

Factorize: x^3+125y^3​

Answers

Answered by Abhishek474241
7

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • X³+125y³

{\sf{\green{\underline{\large{To\:find}}}}}

  • Factorize the given term

{\sf{\pink{\underline{\Large{Explanation}}}}}

we know that

a³+b³ = (a+b) (a²+b²-ab)

Now breaking the given term

(X)³+(5y)³

=>(X)³+(5y)³= (x+5y) (x²+25y²-5xy)

Hence the factorisation of (X)³+(5y)³ is (x+5y) (x²+25y²-5xy)

Additional Information

  • a²-b²=(a+b)(a-b)
  • a³-b³ =(a-b) (a²+b²+ab)
Answered by Delta13
17

  \underline{\boxed{ \underline{ \large{ \text{Question}}}}}

Factorize: x³ + 125y³

\underline{\boxed{ \underline{\large{ \text{Answer}}}}}

125y³ can be written as (5y)³

We know that,

 \underline {\boxed{  \textsf{{a}}^{3} +   \textsf{{b}}^{3}  =  \textsf{(a + b)} \textsf{( {a}}^{2}   - \textsf{ ab} +   \textsf{{b}}^{2} \textsf) }} \\

Here,

a = x

b = 5y

So,

 \small {x}^{3}  + 125y {}^{3}  = (x + 5y)( {x}^{2}  - x \times 5y +  {(5y)}^{2} ) \\  \\  \implies \boxed{\green{ (x + 5y)( {x}^{2}  - 5xy + 25 {y}^{2} )}} \\  \\

Hence, the required factorisation is

(x+5y)(x²+25y²-5xy)

_________________

  • Related formula:

a³- b³=(a -b)(a² +ab +b²)

Similar questions