Math, asked by Anonymous, 5 months ago

Factorize x^3 - 5x^2 - 2x + 24

⇝No spam :'(

Answers

Answered by Anonymous
10

Given :

  • x³ - 5x² - 2x + 24

To find :

  • Factorise x³ - 5x² - 2x + 24

According to the question :

Let p ( x ) = x³ - 5x² - 2x + 24

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Assuming x = 1 :

⟹ x³ = 1 × 1 × 1 = 1

⟹ 5x² = 5 × 1 × 1 = 5

⟹ 2x = 2 × 1 = 2

⟹ 24 = 24

↦p ( 1 ) = 1 - 5 - 2 + 24 = 18 ≠ 0

↦( x - 1 ) is not a factor

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Assuming x = -1 :

⟹ x³ = -1 × -1 × -1 = -1

➳ [ ( - ) × ( - ) = ( + ) , ( + ) × ( - ) = ( - ) ]

⟹ 5x² = 5 × -1 × -1 = -5

➳ [ ( + ) × ( - ) = ( - ) , ( - ) × ( + ) = ( - ) ]

⟹ 2x = 2 × -1 = 2

⟹ 24 = 24

↦p ( -1 ) = -1 -5 + 2 + 24 = 20 ≠ 0

↦( x + 1 ) is not a factor

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

So, we have to search for different values of ' x ' by trial and error method.

Assuming x = 2 :

⟹ x³ = 2 × 2 × 2 = 8

⟹ 5x² = 5 × 2 × 2 = 10 × 2 = 20

⟹ 2x = 2 × 2 = 4

⟹ 24 = 24

↦p ( 2 ) = 8 - 20 - 4 + 24 = 8 ≠ 0

↦Hence, ( x - 2 ) is too not a factor

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Assuming x = -2 :

⟹ x³ = -2 × -2 × -2 = -8

➳ [ ( - ) × ( - ) = ( + ) , ( + ) × ( - ) = ( - ) ]

⟹ 5x² = 5 × -2 × -2 = -10 × 2 = -20

➳ [ ( + ) × ( - ) = ( - ) , ( - ) × ( + ) = ( - ) ]

⟹ 2x = 2 × -2 = 4

⟹ 24 = 24

↦p ( -2 ) = -8 -20 + 4 + 24 = 0

p ( -2 ) = 0

↦Hence, ( x + 2 ) is a Factor

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

| 1 -5 -2 24

| 0 -2 +14 -24

|______________

| 1 -7 12 | 0 ( remainder )

| 0 3 -12 |___________

|______________

1 -4 | 0 ( remainder )

|_______

Thus, ( x + 2 ) ( x - 3 ) ( x - 4 ) are the factors.

∴ x³ - 5x² - 2x + 24 = ( x + 2 ) ( x - 3 ) ( x - 4 )

So, It's Done !!


Anonymous: Good
prince5132: Awesome !!
Answered by Anonymous
3

Answer:

(x-4) (x-3) (x-2)

Step-by-step explanation:

how \: to \: solve \: your \: question \\  \\ x {}^{3}  - 5x {}^{2}  - 2x + 24 \\  \\  \\ 1.find \: one \: factor \:  \\  \\ factor \: by \: grouping \:  \\  \\ x3 - 5x {}^{2}  \:  - 2x + 24 \\ x3 - 1x {}^{2}  - 6x - 4x {}^{2}  + 4x + 24 \\  \\ factor \: by \: grouping \:  \\  \\ x {}^{3}  - 1x {}^{2}  - 6x - 4x {}^{2}  + 4x + 24 \\ x {}^{3}  - 1.x \: x \:  - 6x - 4x {}^{2}  + 4x + 24 \\  \\ factor \: by \: grouping \:  \\  \\ x {}^{3}  - 1.x \: x \:  - 6x - 4x {}^{2}  + 4x + 24 \\ x(x {}^{2}  - x - 6) - 4(x {}^{2}  - x - 6) \\  \\ factor \: by \: grouping \:  \\  \\ x(x {}^{2}  - x - 6) - 4(x {}^{2}  - x - 6 \\ (x - 4)(x {}^{2}  - x - 6) \\  \\ 2.find \: one \: factor \:  \\  \\ factor \: by \: grouping \:  \\  \\ (x - 4)(x {}^{2}  - x - 6) \\ (x - 4)(x {}^{2}  -3x + 2x - 6) \\  \\ factor \: by \: grouping \:  \\  \\ (x - 4)( {x}^{2}  - 3x + 2x - 6) \\  \\ factor \: by \: grouping \:  \\  \\ (x - 4)(x(x - 3) + 2(x - 3)) \\ (x - 4)(x - 3)(x - 2) \\ (x - 4)(x - 3)(x - 2) \\  \\ solution..(x - 4)(x - 3)(x - 2)

thanks post this types question

good luck

Similar questions