Factorize x^3 - 5x^2 - 2x + 24
⇝No spam :'(
Answers
Given :
- x³ - 5x² - 2x + 24
To find :
- Factorise x³ - 5x² - 2x + 24
According to the question :
Let p ( x ) = x³ - 5x² - 2x + 24
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Assuming x = 1 :
⟹ x³ = 1 × 1 × 1 = 1
⟹ 5x² = 5 × 1 × 1 = 5
⟹ 2x = 2 × 1 = 2
⟹ 24 = 24
↦p ( 1 ) = 1 - 5 - 2 + 24 = 18 ≠ 0
↦( x - 1 ) is not a factor
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Assuming x = -1 :
⟹ x³ = -1 × -1 × -1 = -1
➳ [ ( - ) × ( - ) = ( + ) , ( + ) × ( - ) = ( - ) ]
⟹ 5x² = 5 × -1 × -1 = -5
➳ [ ( + ) × ( - ) = ( - ) , ( - ) × ( + ) = ( - ) ]
⟹ 2x = 2 × -1 = 2
⟹ 24 = 24
↦p ( -1 ) = -1 -5 + 2 + 24 = 20 ≠ 0
↦( x + 1 ) is not a factor
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
So, we have to search for different values of ' x ' by trial and error method.
Assuming x = 2 :
⟹ x³ = 2 × 2 × 2 = 8
⟹ 5x² = 5 × 2 × 2 = 10 × 2 = 20
⟹ 2x = 2 × 2 = 4
⟹ 24 = 24
↦p ( 2 ) = 8 - 20 - 4 + 24 = 8 ≠ 0
↦Hence, ( x - 2 ) is too not a factor
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Assuming x = -2 :
⟹ x³ = -2 × -2 × -2 = -8
➳ [ ( - ) × ( - ) = ( + ) , ( + ) × ( - ) = ( - ) ]
⟹ 5x² = 5 × -2 × -2 = -10 × 2 = -20
➳ [ ( + ) × ( - ) = ( - ) , ( - ) × ( + ) = ( - ) ]
⟹ 2x = 2 × -2 = 4
⟹ 24 = 24
↦p ( -2 ) = -8 -20 + 4 + 24 = 0
↦p ( -2 ) = 0
↦Hence, ( x + 2 ) is a Factor
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
| 1 -5 -2 24
| 0 -2 +14 -24
|______________
| 1 -7 12 | 0 ( remainder )
| 0 3 -12 |___________
|______________
1 -4 | 0 ( remainder )
|_______
Thus, ( x + 2 ) ( x - 3 ) ( x - 4 ) are the factors.
∴ x³ - 5x² - 2x + 24 = ( x + 2 ) ( x - 3 ) ( x - 4 )
So, It's Done !!
Answer:
(x-4) (x-3) (x-2)
Step-by-step explanation: