Math, asked by aryangupta93, 8 months ago

factorize x^4-1/64 pls solve fast

Answers

Answered by sezzu2001
4

Answer:X^4–1/64

=(X^2–1/8)(X^2+1/8)=(X-1/2rOOT(2))(X+1/2rOOT(2))(X^2+1/8)

If you can't understand here's the pic

Attachments:
Answered by hukam0685
2

Factors are

 \bf \red{{x}^{4}  -  \frac{1}{64} =  \left( {x}^{2}  +  \frac{1}{8}  \right)\left(x +  \frac{1}{2 \sqrt{2} } \right) \left( x-  \frac{1}{2 \sqrt{2} } \right)} \\

Given:

  •  {x}^{4}  -  \frac{1}{64}  \\

To find:

  • Factors of given polynomial.

Solution:

Identity to be used:

 \boxed{{a}^{2}  -  {b}^{2}  = (a + b)(a - b)} \\

Step 1:

Rewrite the polynomial.

( { {x}^{2} })^{2}  -  \left( { \frac{1}{8} } \right)^{2}  \\

here

a =  {x}^{2}  \\

and

b =  \frac{1}{8}  \\

So,

( { {x}^{2} })^{2}  -  \left( { \frac{1}{8} } \right)^{2} = ( {x}^{2}  +  \frac{1}{8} )( {x}^{2}  -  \frac{1}{8} ) \\

Step 2:

Again rewrite the factors having -ve sign and apply the same identity again.

( {x}^{2}  -  \frac{1}{8} ) =  {x}^{2} -    \left({ \frac{1}{2 \sqrt{2} } } \right)^{2}   \\

or

{x}^{2} -    \left({ \frac{1}{2 \sqrt{2} } } \right)^{2}  =\left(x +  \frac{1}{2 \sqrt{2} } \right) \left( x-  \frac{1}{2 \sqrt{2} } \right) \\

Thus,

The factors are

 \bf {x}^{4}  -  \frac{1}{64} =  \left( {x}^{2}  +  \frac{1}{8}  \right)\left(x +  \frac{1}{2 \sqrt{2} } \right) \left( x-  \frac{1}{2 \sqrt{2} } \right) \\

Learn more:

1) 25(x+y)^2-36(x-2y)^2 factorise

https://brainly.in/question/3845215

2) If x + 1/x. =4 then find x2 +1|/x2

https://brainly.in/question/5375326

Similar questions