factorize : (x-a)² + 5(x-a)(y-b) - 36(y-b)²
Answers
Answered by
0
Answer:
hi
Step-by-step explanation:
STEP
1
:
Equation at the end of step 1
(((x-a)2)+((5•(x-a))•(y-b)))-36•(y-b)2
STEP
2
:
Equation at the end of step 2
(((x-a)2)+(5•(x-a)•(y-b)))-36•(y-b)2
STEP
3
:
Equation at the end of step 3
(((x-a)2)+5•(x-a)•(y-b))-36•(y-b)2
STEP
4
:
4.1 Evaluate : (y-b)2 = y2-2yb+b2
Final result :
x2 - 2xa + 5xy - 5xb + a2 - 5ay
hope it help you:)
Answered by
0
Step-by-step explanation:
36*1= 36
9*4 = 36
9-4=5
9(x-a)(y-b)-4(x-a)(y-b)=5(x-a)(y-b)
so, we can write the equation as
(x-a)² + 9(x-a)(y-b)-4(x-a)(y-b) - 36(y-b)²
={(x-a)² + 9(x-a)(y-b)} - {4(x-a)(y-b) + 36(y-b)²}
= (x-a){(x-a) + 9(y-b)} - 4(y-b){(x-a) + 9(y-b)}
= {(x-a) - 4(y-b)} {(x-a) + 9(y-b)}
Similar questions