Math, asked by vibhu9508, 1 year ago

Factorize x sq. + 1/(x) sq. -2 -3x + 3/x

Answers

Answered by abhi178
0

 {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 - 3x +  \frac{3}{x } \\  \\  = {(x -  \frac{1}{x}) }^{2}   + 2 - 2 - 3(x -  \frac{1}{x} ) \\  \\  =  {(x -  \frac{1}{x} )}^{2}  - 3(x -  \frac{1}{x} ) \\  \\  = (x -  \frac{1}{x} )(x -  \frac{1}{x}  - 3)
here,we use the formula,
\boxed{\boxed{a^2+b^2=(a-b)^2+2ab}}
\text{hence, answer is (x - 1/x)(x - 1/x - 3)}
Answered by duragpalsingh
0
 {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 - 3x +  \frac{3}{x } \\  \\\text{We know,}\\\\a^2+b^2=(a-b)^2+2ab\\\\By \ using \ this,\\\\  = {(x -  \frac{1}{x}) }^{2}   + 2 - 2 - 3(x -  \frac{1}{x} ) \\  \\  =  {(x -  \frac{1}{x} )}^{2}  - 3(x -  \frac{1}{x} ) \\  \\  = \boxed{\boxed{(x -  \frac{1}{x} )(x -  \frac{1}{x}  - 3)}}
Similar questions