Factorize : x3+3x2y+3xy2+2y2
Answers
Answered by
59
Correct question be :
Factorize x³ + 3x²y + 3xy² + 2y³
Answer :
Now, x³ + 3x²y + 3xy² + 2y³
= ( x³ + 3x²y + 3xy² + y³ ) + y³
= ( x + y )³ + y³
= ( x + y + y ) { ( x + y )² - ( x + y ) y + y² }
= ( x + 2y ) ( x² + 2xy + y² - xy - y² + y² )
= ( x + 2y ) ( x² + xy + y² )
which is the required factorization
Algebraic Identities :
( a + b )³ = a³ + 3a²b + 3ab² + b³
a³ + b³ = ( a + b ) ( a² - ab + b² )
#MarkAsBrainliest
Answered by
0
Same by that mark as brainliest user
thank you
Similar questions