Math, asked by jaiswalbibek37, 5 months ago

Factorize : x⁴+ x²+1​

Answers

Answered by Anonymous
0

Answer:

ANSWER

Given, x

4

+x

2

+1

=(x

2

)

2

+2(x

2

)(1)+1

2

−x

2

=(x

2

+1)

2

−x

2

=(x

2

+1−x)(x

2

+1+x)

Answered by Arceus02
0

Given:-

  • \sf x^4 + x^2 + 1

We have to factorise this.

\\

Answer:-

  \bf \large \:  {x}^{4}  +  {x}^{2}  + 1

\\

  • We shall write it as,

 \longrightarrow  \bf \large {( {x}^{2}) }^{2}  +  {x}^{2}  + 1

\\

  • Let \sf y = x^2

\\

 \longrightarrow    \bf \large {y}^{2}  + y + 1

\\

We can write this as,

 \longrightarrow    \bf \large {y}^{2}  + 2y  - y +  1

\\

 \longrightarrow    \bf \large {y}^{2}  + 2y   +  1 - y

\\

  • Notice that the first three terms are in the form of a² + 2ab + b² = (a + b)²

 \longrightarrow    \bf \large (y + 1) {}^{2}  -  {( \sqrt{y})}^{2}

\\

  • Using a² - b² = (a - b)(a + b)

\\

 \longrightarrow    \bf \large (y + 1 -  \sqrt{y} )(y + 1  +  \sqrt{y} )

\\

  • But we had considered \sf y = x^2

\\

  \bf \large \longrightarrow    ( {x}^{2}  + 1 -  \sqrt{ {x}^{2} } )(   {x}^{2}  + 1  +  \sqrt{ {x}^{2} } )

\\

    \bf \large  \longrightarrow    ( {x}^{2}  + 1 -  x )(   {x}^{2}  + 1  +  x )

\\

 \longrightarrow \underline{ \underline{ \sf { \green{  ({x}^{2}  - x + 1)( {x}^{2}  + x + 1)}}}}

Similar questions