Math, asked by nageshhari89, 1 month ago

Factorize xsq+25ysq+81zsq+10xy+90yz+18zx​

Answers

Answered by mailarhanamishra
0

Answer:

3y(5y-7)

Step-by-step explanation:

(i) y^2+7y+10\ =\ y^2+2y+5y+10y

2

+7y+10 = y

2

+2y+5y+10

=\ y\ \left(y+2\right)+5\left(y+2\right)= y (y+2)+5(y+2)

=\ \left(y+5\right)\left(y+2\right)= (y+5)(y+2)

Division: \frac{\left(y+5\right)\left(y+2\right)}{y+5}=\ y+2

y+5

(y+5)(y+2)

= y+2

(ii) m^2-14m-32\ =\ m^2-16m+2m-32m

2

−14m−32 = m

2

−16m+2m−32

=\ m\left(m-16\right)+2\left(m-16\right)= m(m−16)+2(m−16)

=\ \left(m+2\right)\left(m-16\right)= (m+2)(m−16)

Division: \frac{\left(m+2\right)\left(m-16\right)}{m+2}

m+2

(m+2)(m−16)

= m-16

(iii) 5p^2-25p+20\ =\ 5\left(p^2-5p+4\right)5p

2

−25p+20 = 5(p

2

−5p+4)

= 5\left(p^2-4p-p+4\right)5(p

2

−4p−p+4)

=5\left[p\left(p-4\right)-1\left(p-4\right)\right]5[p(p−4)−1(p−4)]

=5\left(p-1\right)\left(p-4\right)5(p−1)(p−4)

Division: \frac{5\left(p-1\right)\left(p-4\right)}{p-1}

p−1

5(p−1)(p−4)

= 5(p-4)

(iv) 4yz\left(z^2+6z-16\right)=4yz\left[z^2+8z-2z-16\right]4yz(z

2

+6z−16)=4yz[z

2

+8z−2z−16]

=4yz\left[z\left(z+8\right)-2\left(z+8\right)\right]=4yz[z(z+8)−2(z+8)]

4yz\left(z-2\right)\left(z+8\right)4yz(z−2)(z+8)

division = \frac{4yz\left(z-2\right)\left(z+8\right)}{2y\left(z+8\right)}\ =\ 2z\left(z-2\right)

2y(z+8)

4yz(z−2)(z+8)

= 2z(z−2)

(v) 5pq\left(p^2-q^2\right)=5pq\left(p+q\right)\left(p-q\right)5pq(p

2

−q

2

)=5pq(p+q)(p−q)

Division: \frac{5pq\left(p+q\right)\left(p-q\right)}{2p\left(p+q\right)}

2p(p+q)

5pq(p+q)(p−q)

=\ \frac{5}{2}q\left(p-q\right)=

2

5

q(p−q)

(vi) 12xy\left(9x^2-16y^2\right)=\ \ 2\times2\times3\times x\times y\times\left[\left(3x\right)^2-\left(4y\right)^2\right]12xy(9x

2

−16y

2

)= 2×2×3×x×y×[(3x)

2

−(4y)

2

]

=3\times4xy\times\left[\left(3x+4y\right)\left(3x-4y\right)\right]=3×4xy×[(3x+4y)(3x−4y)]

Division: \frac{3\times4xy\times\left(3x+4y\right)\left(3x-4y\right)}{4xy\left(3x+4y\right)}

4xy(3x+4y)

3×4xy×(3x+4y)(3x−4y)

= 3(3x-4y)

(vii) 39y^3\left(50y^2-98\right)=\ 3\times13\times y\times y\times y\times2\left(25y^2-49\right)39y

3

(50y

2

−98)= 3×13×y×y×y×2(25y

2

−49)

=3\times13\times y\times y\times y\times2\left(\left(5y\right)^2-\left(7\right)^2\right)3×13×y×y×y×2((5y)

2

−(7)

2

)

=3\times13\times2\times y\times y\times y\times\left[\left(5y+7\right)\left(5y-7\right)\right]3×13×2×y×y×y×[(5y+7)(5y−7)]

26y^2\left(5y+7\right)=2\times13\times y\times y\times\left(5y+7\right)26y

2

(5y+7)=2×13×y×y×(5y+7)

Division = \frac{2\times3\times13\times y\times y\times y\times\left(5y+7\right)\left(5y-7\right)}{2\times13\times y\times y\times\left(5y+7\right)}

2×13×y×y×(5y+7)

2×3×13×y×y×y×(5y+7)(5y−7)

=\ 3\times y\times\left(5y-7\right)= 3×y×(5y−7)

=3y(5y-7)

Similar questions