Math, asked by rameshmudgal27031, 7 months ago

factorizing difference of two squares?​

Attachments:

Answers

Answered by Anonymous
0

\bf{Hello\:\:Mate}

\bf{Question\:\:1}

\bf{Factorize\:\:\dfrac{1}{4}b^2-49}

\bf{Answer}

\bf{We\:\:know\:\:\dfrac{1}{4}b^2\:\:=\:\:\dfrac{b^2}{4}}

\longrightarrow\bf{Apply\:radical\:rule}:\quad \:a=\left(\sqrt{a}\right)^2

\bf{\dfrac{1}{4}=\left(\sqrt{\dfrac{1}{4}}\right)^2}

\bf{\dfrac{1}{4}b^2-49\:\:=\:=\left(\sqrt{\dfrac{1}{4}}\right)^2b^2-49}

\longrightarrow\bf{{Rewrite\:}49\:as\:7^2}

=\bf{\left(\sqrt{\dfrac{1}{4}}\right)^2b^2-7^2}

\longrightarrow\bf{Apply\:exponent\:rule}:\quad \:a^mb^m=\left(ab\right)^m}

\bf{\left(\sqrt{\dfrac{1}{4}}\right)^2b^2=\left(\sqrt{\dfrac{1}{4}}b\right)^2}

=\bf{\left(\sqrt{\dfrac{1}{4}}b\right)^2-7^2}

\longrightarrow\bf{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\bf{\left(\sqrt{\dfrac{1}{4}}b\right)^2-7^2=\left(\sqrt{\dfrac{1}{4}}b+7\right)\left(\sqrt{\dfrac{1}{4}}b-7\right)}

=\bf{\left(\sqrt{\dfrac{1}{4}}b+7\right)\left(\sqrt{\dfrac{1}{4}}b-7\right)}

\longrightarrow\bf{Refine}

=\bf{\left(\dfrac{b}{2}+7\right)\left(\dfrac{b}{2}-7\right)}

\rule{250}{6}

\bf{Question\:\:2}

\bf{Factorize\:\:a^4-81}

\bf{Answer}

\bf{Rewrite\:\:}a^4-81\bf{\:as\:}\left(a^2\right)^2-9^2

\longrightarrow\bf{How\:\: to \:\:do\:\: that \:\:?}

\bf{Apply\:exponent\:rule}:\quad \:a^{bc}=\left(a^b\right)^c

\bf{a^4=\left(a^2\right)^2}

\bf{Rewrite\:\:}81{\:as\:9^2

\longrightarrow\bf{a^4-81\:\:=\:\:\left(a^2\right)^2-9^2}

\longrightarrow\bf{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\bf{\left(a^2\right)^2-9^2=\left(a^2+9\right)\left(a^2-9\right)}

=\bf{\left(a^2+9\right)\left(a^2-9\right)}

\bf{Thankyou !!!!!}

Similar questions