Math, asked by gsehrawat367, 1 month ago

Factors of 1/4x² - X – 3​

Attachments:

Answers

Answered by himanshu2007024
0

Answer:

Given Equation is (1/4)x^2 + x - 3.

= > (\frac{1}{4})x^2 + 4x - 12=>(

= > (\frac{1}{4})x^2 + 4x - 12=>( 4

= > (\frac{1}{4})x^2 + 4x - 12=>( 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>(

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 4

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=>

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 4

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>(

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 4

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 41

= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 41 )[(x−2)(x+6)]

Step-by-step explanation:

i hope it helps you

Answered by mamtabirla543
0

Answer:

Hope it Helps!!!

Mark me Brainliest

Attachments:
Similar questions