Factors of 1/4x² - X – 3
Attachments:
Answers
Answered by
0
Answer:
Given Equation is (1/4)x^2 + x - 3.
= > (\frac{1}{4})x^2 + 4x - 12=>(
= > (\frac{1}{4})x^2 + 4x - 12=>( 4
= > (\frac{1}{4})x^2 + 4x - 12=>( 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>(
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 4
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=>
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 4
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>(
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 4
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 41
= > (\frac{1}{4})x^2 + 4x - 12=>( 41 )x 2 +4x−12= > (\frac{1}{4})[x^2 + 6x - 2x - 12]=>( 41 )[x 2 +6x−2x−12]= > \frac{1}{4}[x(x + 6) - 2(x + 6)]=> 41 [x(x+6)−2(x+6)]= > (\frac{1}{4})[(x - 2)(x + 6)]=>( 41 )[(x−2)(x+6)]
Step-by-step explanation:
i hope it helps you
Answered by
0
Answer:
Hope it Helps!!!
Mark me Brainliest
Attachments:
Similar questions