Math, asked by rameshchaurasiya573, 2 months ago

factors of 25-y²-4x²+4xy are​

Answers

Answered by mahek77777
2

GIVEN :–

• Diffrential equation –

  \\ \implies \bf(1 + x^2)  \dfrac{dy}{dx} + 2xy = cosx \\

TO FIND :–

• Solution of diffrential equation = ?

SOLUTION :–

  \\ \implies \bf(1 + x^2)  \dfrac{dy}{dx} + 2xy = cosx \\

  \\ \implies \bf\dfrac{dy}{dx} + \dfrac{2x}{(1 + x^2)}y =  \dfrac{cosx}{(1 + x^2)} \\

• Compare with –

  \\ \implies \bf\dfrac{dy}{dx} +Py =  Q \\

• So –

  \\ \implies \bf P =\dfrac{2x}{(1 + x^2)} \:  \: and \:  \: Q = \dfrac{cosx}{(1 + x^2)} \\

• We know that –

  \\ \implies \bf I.F. = e^{\int P.dx} \\

  \\ \implies \bf I.F. = e^{\int \frac{2x}{(1 + x^2)}dx} \\

  \\ \implies \bf I.F. = e^{ \log{(1 + x^2)}} \\

  \\ \implies \large{ \boxed{\bf I.F. = 1 +  {x}^{2} }}\\

• Solution :–

  \\ \implies \bf y(I.F.) =  \int(I.F)Q.dx + c\\

  \\ \implies \bf y(1 +  {x}^{2} ) =  \int\dfrac{cosx}{(1 + x^2)} \times (1 +  {x}^{2}) .dx + c\\

  \\ \implies \bf y(1 +  {x}^{2} ) =  \int\cos(x) .dx + c\\

  \\ \implies \large { \boxed{\bf y(1 +  {x}^{2} ) =  \sin(x) + c}}\\

Similar questions