Math, asked by manmadarao123123, 10 months ago

factors of 27x3 -1/x3​

Answers

Answered by Anonymous
3

 \pink{ \boxed{Answer}}

(3x - 1/x)(9x² + 3 +1/x²)

 \pink{ \boxed{step \: by \: step \: explanation}}

27 {x}^{3}  -  { \frac{1}{x ^{3} }} \\    \\ = ( {3x})^{3}  -  ({ \frac{1}{x} })^{3}  \\  \\  = (3x -  \frac{1}{x} )[ ({3x)}^{2}  + 3x \times  \frac{1}{x}  +  { (\frac{1}{x} })^{2}] \\  \\  = (3x -  \frac{1}{x} )(9 {x}^{2}  + 3 +  \frac{1}{ {x}^{2} } )

  \pink{\boxed{Formula \: used}}

• x³ - y³ = (x - y)( x² + xy +y²)

Answered by pandaXop
0

Step-by-step explanation:

Given:

  • 27x³ – 1/x³

27x {3} -  \frac{1}{ {x}^{3} }

(3x) ^{3}  -  \: ( \frac{1}{x} ) ^{3}

we \: know \: that \:  {a}^{3}  -  {b}^{3}  = (a \:  - b) {a}^{2}   +  {b}^{2} + 2ab

(3x -  \frac{1}{x} )(3x )^{2}  + ( \frac{1}{x}) ^{2}  + 3x \times  \frac{1}{x}

(3x 1/x) (9x² + 1/ + 3)

Similar questions