Math, asked by Bhakyaraj3595, 7 months ago

Factors of a^3-2root2b^3 are

Answers

Answered by mysticd
4

 Given \: a^{3} - 2\sqrt{2} b^{3}

 =  a^{3} - (\sqrt{2} b)^{3}

/* By algebraic identity */

 \boxed{ \pink { x^{3} - y^{3} = (x-y)(x^{2}+xy+y^{2})}}

 = (a-\sqrt{2}b)[ a^{2} + a \times \sqrt{2}b+ (\sqrt{2}b)^{2} ]

 = (a-\sqrt{2}b)(a^{2} +  \sqrt{2}ab+ 2b^{2})

Therefore.,

 \red{Factors \:of \: a^{3} - 2\sqrt{2} b^{3} }

 \green {= (a-\sqrt{2}b)(a^{2} +  \sqrt{2}ab+ 2b^{2})}

•••♪

Answered by Anonymous
7

ANSWER ✔

\implies a^3- 2 \sqrt{2}b^3

IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: x^3-y^3= (x-y)(x^2+y^2+xy)\:\: \star}}}

\large\underline\bold{SOLUTION,}

\dashrightarrow  a^3- 2 \sqrt{2}b^3

 \implies  (a-\sqrt{2}b)( a^{2} + a \times \sqrt{2}b+ (\sqrt{2}b)^{2} )

 \implies  (a-\sqrt{2}b)(a^{2} +  \sqrt{2}ab+ 2b^{2})

\large{\boxed{\bf{ \star\:\: (a-\sqrt{2}b)(a^{2} +  \sqrt{2}ab+ 2b^{2})\:\: \star}}}

___________

Similar questions